k.3

CHAPTER 11

STATISTICAL INTERPRETATION OF RESULTS

When dealing with errors, distinction should be made between:
(a) systematic errora, which determine the accuracy of & result; (b)
random errors, which determine the reproducibility or precision.

By systematic errors the experimental results deviate from the
true value, because of "a bias. Statistics, on the other hand,
only deal with random egrors, which are a measure for the reliability
of & procedure.

Systematic errors are described in Chapter 10, The present chapter
illustrates how statistical methods may be applied to data obtained by
activation analysis. Although the statistical method is a most important
part in the evaluation assessment, no attempt is made to present a
rigorous or complete treatment. Some typical examples will be given,
which are frequently encountered when dealing with radioactivity
measurements and with analytical results from activation analysis,
Obviously, the statistical approach cannot obviate the need for common
sense and sound analytical techniques, but unnecessary loss of operator
time in the laboratory can often be eliminated and the reliability of the
deductions increased by the use of statistical methods and of carcfully
designed experiments.

I. Application of Statistical Methods to Analytical Resulis

(A) BEST VALUE FOR A SET OF OBSERVATIONS

It generally makes no sense to define an error as the deviation of a
measurement from the true value, as the latter is vsually unknown.
Thus, a definition of “‘error’” can only bs given after evaluation of the
most probable value of the quantity measured. Experimental data are

‘always associated with the inevitable errors of observation, i.e. they
all can differ among themselves within some limits,

For a number n of observations z;, x,, . . . 23, made under the same
conditions and all equally reliable, the “arithmetic mean® is the best
representative value: n

Z=) zin (11.1)
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If all observations are not equally reliable (e.g. several “populati.
with the same form end mean), & statistical weight W; can be intro-
duced (data pooling). The moat probable value is then the “weighted
mean”, sometimes called the “general or probable mean":

=3 WefS Wy (11.2)

where W; = A/o} (equation 11.71). In section V of this chapter some
examples are described showing how the statistical weights Wy are
determined in practice.

(B) PRECISION — STANDARD DEVIATION

In some observation sets, the total apread can be so narrow that
only & few measurements are needed to obtain & close approximation .
of the arithmetio mean, which-should be found with a large population.
In other cases, the measurements are widely scattered, necessitating
a large amount of data. In the firat case the results are said to be
reproducible or precise, in the second case they are not. The degres
of confidence can be expressed in terms of *“probable error”, “‘atandard
deviation, “nine-tenths error”, ete. (Table 11.1). .

The reproducibility of an analytical method in a given concentration
range is usually expressed by the standard deviation ¢(z) on a single
determination. This can be ohtasined from the statistical concept of
variance, which for a single measurement is given by:

vﬂi(i—zt)'

—— (11.3)

where n — 1 indicates the degrees of freedom of the observation set.
The applicability of (11.3) requires that all observations z; are made
under the same conditions and are all equally reliable. The standard
deviation on & single observation is given by the square root of the
variance, ou condition that « is sufficiently large:

If a number of n analyses i3 made, & better estimate of the result
is possible, The standard deviation which affects the whole series of

(11.3 bis)



e Mlar  m A et ALK A A A A AR AR ddd b

Ir;‘ .
A

* results, o{2), . be calculated as follov;'s:

" . a‘ o
ol) = J {z—n———g ~ ’;‘)) } = % (11.4)

o(Z) is an esvimate for the standard deviation of the mean value £,

If a precision o(%) is required for the result & the necessary
number n of analyses can be computed from equation (11.4), if o(x) is
known. Merely increasing the number of experiments, without varying
the experimental conditions, decreases the influence of random errors,
i.e. the precision improves. It is, however, useless to increase tha
number of observations beyond some limit, because of constant,
systematic or individual errors (see I, G).

On the other hand, the greater the number and variety of the
experiments (e.g. results obtained by different metheds andfor different
laboratories), the more the probability of ocourrence of systematic
errors will decrease, as they become of random nature.

The error on a single measurement can also be expressed as percent-
age standard deviation o+, which is defined by the following relation-
ship: ’

oy, = 100a(z)/E {11.5)

where £ is given by equation (11.1) and o(z) by equation (11.3}.
* The exact standard deviation ¢ can be found from an infinite number
of observations, For & limited number of observations, the symbol #
is often used: s(x) and s(Z).

(C} CoNFroeNCE Lmrrs

As the arithmetic mean for an infinite nnmber of observations is
usually not accessible, it is only possible to calculate the probability
that this value is contained within the limits £ + Az. The number Az
can be chosen arbitrarily small. It is common practice to express Az
in terms of the standard deviation, e.g. + Az= % o, where ¢ depends
on the probability level and on the number of degrees of freedom. If
‘the latter is large, ¢~u (see Table 11.1). For a normal distribution a
result ¢ will be obtained within the interval 2 + (2} with a probability
P =0.683 or 68.3%. This means that, in the average, two out of three
results may be expected to deviate from the mean by less then one
standard deviation. Hence, the interval 2y + ofz;} will contain the
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arithmetic mean of an infinite number of observations with ca. 654
probability.

Obvicusly, the degree of confidence increases, as the ‘““confidence
interval” increasea (Table 11.1).

For trace analysis, the 0.68 probability lovel is generally accepted.
In other cases, e.g. minor constituent analysis, a more severe confidence
limit may be required, for instance 120 (P = 959). The interval
4 3¢ practically represents the maximum random error associated with
a measurement (P = $0.7%).

TABLE 11.1 Probability levels
P = probability that the error of an analysis < uc
P’ = probability that the error of an analysis > uv (P’ = 1 ~ P)

Constant ¥ Probability P P’ Error
0.6745 0.500 0.500 “Probable error”
1.000 0.683 " 0.317 “Standard deviation" (o)
(rms orror)
1177 0.761 0.239
1.645 0.900 0.100 ‘“nine-tenths error’* or

“reliable error’ -

1.980 0.950 6.050 “ninety-five hundredths error”
2.676 0.880 9.010 “ainety-nine bundredths error"
2.807 0.865 0.005

3.000 0.8973 0.0027 3o

3.201 0.969 0.001

4.000 0.50004 0.00006 4o

(D) OutLiER REJECTION (CHAUVENET'S CRITERION)

There can be no guestion about the rejection of faulty observations,
provided there is evidence for a miastake. Examples: (i) one notices
that an irradiated sample was not etched before chemical separation
of the element to be determined, so that contamination occurred;
(ii) faulty determination of the chemical yicld, e.g. incomplete develop-
ment of a colour for spectrophotometric determination, due to wrong
pH; (iii) during counting experiments outliers can ocour by disturb-
ances external to the nuclear process, such as amplifier noise, electrical
line noise, shift of amplifier gain due to variation in temperature, eto.
Other typical errors are: misreading the instrument, counting the
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wrong sample, counting the sample in the wrong counting position,
failing to remove or insert an absorber, failure to remove & previous
sarple, failing to set proper discriminater levels, failing to record the
data in legible form resulting in misreading of the written data, ete.

Sometime~ an exhaustive search will fail to reveal any reason why
some results diverge in an unusual and unexpected manner from the
others. Several criteria have been suggested to guide the investigator
in deciding whether doubtful observations shall be included in the mean.
Chauvenet's criterion is perhaps the most convenient to use. It starts
from the assumption that reliable observations will not deviate from
the arithmetical mean beyond some limits (see end of foregoing
paragraph).

In Table 11.2 the limiting value of the deviation from the mean of a
single observation (in units of o) is given as a function of the number of
experiments performed. When this limiting value is exceeded, the
measurement concerned may be rejected.

TABLE 11.2
Chauvenet's criterion for outlier rejection

Number of experimenta 2 4 ] 8 10 20 30 40

Limiting value of error {in units _
of a) 1.15 1.65 1.73 1.68 1.08 2.25 2.40 2.50

Ezample: Determination of oxygen in steel by four different labora-
tories. Results (ppm).

(% — &) (x; — 2)?

lab.1 011 —18 324 2y — &)
T s ul @)= \/ {Z (,; T ) } =0
lab.2 047  +18 324

938 + 9 81
lab.3 992 +63 4+ 3969
944  +15 225
) C B 100
lab.4 903 26 676
809  —30 900

average 929

v
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Limiting value of error for nine experiments: +1.93 o(z} = +58
ppm (Table 11.2). This value is exceeded by the first determination
of laboratory 3 (092 — 929 = 63), hence this measurement may be
rejected. Then, the new average value bacumes: 922 ppm; o(z) = +19
ppm; the limiting factor of error for the eight remaining experiments;
+1.88 ofz) = + 36 ppm. All the remaining results fall within 922 + 36
Ppm.

Conservation of moderate outliers is strongly suggested for the
following reasons (1):

(a) Apparent patterns in sequences of random data are often start-
ling, In the long run, averaging bunched results gives averages that
deviate more from the “true values” than does the mean of all valucs,

(b} As the number of experiments increases, the number of cutliers
increases, Indeed, the rare cceurrence of abnormal results is in aceord- |
ance with the theory of erross.

{c) In a large group of measurements, omission of the outlier has
littla effect on the avérage.

The use of the above criterion is, therefore, permitted only if the
number of ¢bservations is small. It is true that some good observations
may be lost (it discards good observations in ~409%, of the-situations
to which it is applied), but that is the price paid to get rid of serious
deviations. It is perhaps needless to point out that a suspected observa-
tion may ultimately prove to be & real exception requiring further
research.

(E) ProraeATION OF ERRORS

Sometimes several results or measurements x,, z,, . . . affected with
their corresponding errors, e.g. standard deviations o(z,), o(zy), ...
must be combined to give some new quantity X = f(z,, 24, .. ).

In Table 11.3, the error propagation in some common functions is
summarized assuming normality, After computation of the standard
deviation of X, the confidence limit of this quantity can be determined
as 1 ta{X).

The expreasions in Table 11.3 are valid if each o{z)/z, is sufficiently
small (<20%,) and if all 2;"s are statistically independent.

Several practical applications can be fou.nd in the course of this
chapter.
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- TABLE 11.3
Error propagation in some common {unctions

Function Standard deviation

(1) X = z, + z, (addition, subtraction) o¥X) = o¥z,} + o¥(z,)

@)X = ”:' (multiplication, division} %‘;‘3 ;"1___;_" 0’:;-) + o'iz:.)
B) X =az, +b oHX) = atat(z,)

)X = c;(;f) et c':;l)

(6) X = o= °}’f’ 2 ota¥(zy)

(6) X = lncz, A = g;(;,)

(N X = Infz, + z,) o{(X) ﬂ’((-:;l) :—::)(::.)

®X =1 u'tXszi;’—"+";‘—;""

(F) SYSTEMATIC AND RanpoM ErRrRoRs — ACCURACY AND ‘REPRODUCE-
BILITY OR PRECISION

The random errors hitherto discussed have this distinctive feature,
that they are just as likely positive or negative. Some errors however
do not have this character.

For & number of activation analyses using the comparator method,
quite reproducible or precise determinations can be obtained, if, e.g.
the standards are always prepared from the same stock solution. In
the case of faulty preparation of this solution, the determinations will
obviously be inaccurate. Inaccurate results will also be cobtained if
neutron shielding occurs in the sample or in the comparator or if
interfering nuclear reactions occur. Such faulty analyses are said to
be affected by constant or systematic errors. A number of important
systematic errors are discussed in Chapter 10.

A major difficulty for an investigator is to detect and possibly
eliminate constant errors, This is usually done by modifying the
conditions under which the experiments are performed.

l[er;,'».:? ks AL d A A A S oAb i A ARA e o e

#1:4
"J Ezamples: (a) Is the result of an iridium determination in & 1. f
rhodium sample (o, & 150 barn for thermal neutrons) affected by
neutron shielding in the eample (2)? Uking the classical method (10 mg
samples irradiated together with standards) one fiuds 17.0 + 0.3 ppm
Ir. If neutron shielding ocours in the rhodium samples and not in the
iridium standards {1 pg of Ir spotted on filtar paper), the result will be
too low, aa the specific activity of iridium in rhodium is lower than that
in the standards. Indeed, & higher content (18.1 i 0.5 ppm Ir) is
found when using an addition method (see section V, C); the iridium
standard solution is added to rhodium and the sample then dissolved
in a closed quartz tube, prior to irradiation. One can conclude that

neutron shielding occurs and an addition method is recommended.

(b). In the case of an iridium determination in osmium {o,,, = 16
barn for thermal neutrons) the following results were found (3): classical
method (10 mg samples; standards 1 pg Ir ou filter paper) 21 + 2 ppm -

* Ir; addition method (¢f. exainple (a)) 19.5 + 1.2 ppm Ir. As the mean
value of each set of results differs by an amount to be expected from
the standard deviations of the different sets measured under the same
conditions, no error due to neutron shielding is detectable.

(c) Traces of iridium can directly be determined in palladium, after
decay of the palladium activity and separation of 112Ag (daughter of
11Pd), using 72d 19%Ir. Counting of *93Ir can be performed using the
photopeaks ai 317, 468 or 610 keV. For & given sample the following
results were found: 0.20 4+ 0.02 ppm (317 keV), 0.20 £+ 0.02 ppm
(468 keV), 0.26 + 0.02 ppm (610 keV). By changing the counting
conditions, some interfering impurity appears, which emits gamma.-rays
in the 610 keV region. Measuring the 610 keV photopeak could thus
give rise to systematio errors,

(d) If some interfering threshold reaction can introduce a systematio
error, e.g. 5Fe(n, p)**Mn when determining manganese in iron via
the nuclear reaction *Mn(n, y)%Mun, one should choose irradistion
positions in the reactor with different X-values (see Chapter 3, section
VI, B, 3). If no interference ocours, the ratio #*Mn/s*Fe should be
constant. Hoste ef al, (4) found, however, ratios varying from 13 in the
reactor core, to practically zero in the reflector. Consequently, man-
gancse determinations in iron must be performed in a well thermalized
neutron spectrum.

Other examples of avoiding systematic errors are discussed in
detail in Chapter 10.
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1. oo, (sample)

The percentage standard deviation of the sample is determined by
the weight of the sample and even more by the homageneous distribu-

tion of the element to be determined, Sample weights are usually maxi-

mized for the sake of sensitivity and counting statistics, taking however
into account the induced matrix activity and possible shielding effeots.

For sample weighta over 1 mg the precision is better than 0.5%,
From 0.1-1 mg the estimated error is ca. 1%, (7). Weighing of a 100 mg
aluminium sample can be done with high precision, but heterogeneity
at this scale is not unlikely to occur, i.e. when repeating the analyses,
the scatter of the results around a mean value can be much more
important than expected.

If a non-destructive technique is applied, o (chem) is zero. Assum.
ing a sufficiently high activity and a reproducible counting geometry,
oy, (count) is small. Irradiation in reproducible conditions (small
flux gradients and flux perturbations) makes oy, (irrad) small too, If
in these conditions large scatter is observed, thia is moat probably due
to inhomogeneity of the samples, as ow(7T) is practically determined
by o« (sample). During & nondestructive determination of copper ir
bismuth by y~y-coincidence spectrometry, an unusually large scatter
was observed for a given bismuth rod: from 0.04 to 0.4 ppm (8). Re-
arranging, however, the results according to their respective location
along the axis of the rod indicated the existence of a concentration
gradient of eopper. (Figure 11.1.)

2. ay (:'rrad)

The percentage standard deviation of the irradiation is mainly
preduced by variations of the neutron flux and for short lived isotopes
by inaceurate timing. The probiem of flux gredienta in different types
of reactors is discussed in Chapter 10, section II, B, 2. In the case of
a neutron generator, flux gradients are extremely important. Small
variations in the positioning of a sample cause large variativns in
received flux. A displacement of 1 mm towards or away from the
target gives rise to a flux variation of +12.5%, or —119, for a sample of
9 mm thickness at a distance of 9 mm from the target (Figure 10.2).

At a distance of 18 mm, the change in flux is +7.49, and —8.5%,
respectively, For that reason the tolerance on the pneumatic tube
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should be as small as possible (max, 0.5 mm), to reduce random de..a-
tions. Transversal displacement can also introduce considerable varia-
tions, but can reasonably be reduced by using & suitable bumper. In
practice a reproducibility of +2% can be obtained (9).

For very short irradiation times, when samples and standards are
not irradiated simultaneously, v, (irrad) also depends on the repro-
duoibility of the duration of the irradiation {5, thus on the repro-
ducibility of the timers, the pneuraatio syster, etc. Pneumatio systems
always working under overpreasure are often more reproducible than
those where transportation is alternatively performed by over- and
underpressure, The transport times obviously depend on the fotal

T X
8 \\
3 AN
N\ L
\\\
0.1 P\
Ny
S
\.
N\
S
.\\__“
1 2 3 I3
0.01
rod axis —»

Fig. 11.1. Distribution of copper along bismuth rod (8).
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length and Luwer diameter of the tubes and on the pressure, and, for a
given system, on the sample weight (or weight of snmple plus rabbit).
Forty = 10 5, the reproducibility is typically of the order of the percent.

3. o (chem)

Obviously c¢e (chem) must only be considered when chemical
separations are involved. Then it may further be resolved and contains:
the dissolution of the sample and the different steps of the separation,
Although the reproducibility depends on the method used, in the case
of a standard procedure ¢s, {chem) can be estimated to be +29, or
batter.

When an element such as tin or zine is too thoroughly etched after
irradiation, so that its weight is reduced to 60-709, for instance,
some of the dissolved trace elements, which are more electropositive
than the matrix (Cu, Ag, Au,...) may again be deposited on the
sample. Their concentration in the matrix will then be calculated with
a wrong sample weight, thus giving posilive errors.

During the dissolution, losses of the element of interest are possible
by volatilization, by incomplete cleaning of the crucible after a fusion,
etc. In general, some of the practically cairier-free material can be
lost during the chemical treatment, e.g. by adsorption,,if no carriers
or hold-back carriers are added. But even then the problem of isotopie
exchange remains and can cause random or even systematic errors,
A typical example: osmium carrier, prepared by a sodium peroxide
fusion of the metal sponge, was added to osmium tracer, prepared by
dissolving the irradiated metal sponge in aqua regia.

After boiling in sulfuric acid and hydrogen peroxide, the carrier
appeared to distill practically quantitatively, whereas the yield for
the tracer was 85% only, even after repeated addition of carrier and
repeated distillations. For that reason the chemical separation method
must carefully be checked by suitable tracer experiments, particularly
when dealing with elements forming a variety of complexes and (or)
existing in a number of valency states. The radiochemical purity of
the isolated fraction must obviously be checked by half-life measure-
ment or gamma-ray spectrometry.

Other variables, such as manipulation errors, calibration errors in
volumetric glassware, balances, weights, ete. can be neglected when
adequate precautions are applied.
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4. oy (count) J
The percentage standard deviation of the counting is composed of
the following factors:

(a) @& gecmetrical factor;

(b) electronic drift;

(¢) drift in gain and change in resolution as a function of counting

rate;

(d) dead time corrections; these are more likely to introduce

systematic errors and are disoussed in Chapter 10, section II, E;

(e} counting statistics.

(s} Variations in geometry are usually smaller than 119, when
using a flat or well-type scintillator or semiconductor detector and
standard counting vials. Unexpected errora can occur by evaporation
of & liquid through plastic gontainer walls or covers, or when counting
solid samples of irregular shape. When counting volumes of 25-50 ml
in a volumetric flask, placed directly on a flat detector, it is important
to seleot flasks of the same form and fill them to the same height.

(b) Electronic drift and drift due to the temperature coefficient of
the detector will usually not excced +0.3% if the temperature in
the counting room is kept constant within +0.5°C and the relative
humidity within +109%. If the temperature changes, the gain shift of
the photomultiplier, the preamplifier, the amplifier and the pulse height
analyzer can amount up to 1-29} per °C. Around room temperature
sodium iodide and anthracens crystals exhibit a negative temperature
coefficient of respectively 0.19/, per °C and 0.59%, per °C of the pulse
height. When using a Compton-compensated spectrometer, this
difference can result in & mismatch of the encrgy scale compensation,
noticeabls if the temperature in the neighbourhood of the detectors
changes by csa. §°C.

The gain shift characteristics of some multiplier phototubes (Dumeont,
RCA, EMI, CBS) have been examined by Covell and Euler (10). The
stability of the photomultiplier gain also largely depends on the
quality of the high voltage power supply. H.T. power supplies, stabil-
ized with a Weston reference element, are recommended. Similar pre-
cautions must be taken with semiconductor detectors, although H.T.
stabilization is less critical.

A drift control system, which corrects both for the overall drift
due to gain changes and for the zero point drift, which is apparent
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in some mult.uannel anslyzers, has been described by Fite ¢t al, (11).
In the decomposition of complex gamma spectra by weighted least
squares analysis, the influence of electronio instabilities can be calcu-
lated with the y* test (12).

(c) Drift in gain and change in resolution as a function of counting
rate depend mainly on the quality of the photomultiplier tube (10)
and the pulse shaping circuits. These factors also depend on the decay
constant of the light pulses in the scintillator. Some typical data:
NaI(TI) 0.25 us, CsI(T1) 1.1 ps, KI(TI) 1.0 ps, anthracene 0.032 pus,
trans-stilbene 0.006 us, plastic and liquid phosphors 0.002-0.008 ps.

The use of & selected photomultiplier tube is highly important to
minimize changes in gain, whereas the blesder chain and load resistor
determine the pulse duration, thus affecting the resolution. The require-
nents of pulse height analyzers with respect to pulse duration vary
from instrument to instrument, but pulse duraticns of one to several
microseconds are most common. The linear amplifier transforma the
detector signals into signals suitable for pulse height analysis (pulse
shaping and amplification). -

In the case of single- RC differentiation and single-delay-line differen.
tiation the base line depends on the counting rate, At high counting
rates the small but long undershoot departs appreciably frorm the
normal level. .

If the signal is measured with respect to an average reference base
line, it is recorded as being smaller than at low counting rates, On tho
other hand, the probability for pile-up increases, since ths signals can
occur in statistical bursts: such signals will bs recorded as heing larger
than at low counting rates, These effects result in a detericration of the
resolution; Figure 11.2 shows the effects for single- RC-clipping.

Base.line displacements are less important for double-RC-clipping
{(bipolar signals) but longer RC time constants are often necessary to
keep the system linear. A longer time constant results however in a
greater probability for pile-up. Hence, the upper limit of the counting
rate at which spectral distortion is not excessive, may be similar for the
three pulse shaping systems mentioned. The pulse lengthening can ba
avoided if the resistor in the second clip is parallelled by a D.C. restoring
diode, which removes the undershoot (13) {(Figure 11.3), The second
clip is usually at the amplifier output and direct coupling between the
second clip wrd the pulse heiglit analyzer is used to keep the base-line
location ““independent™ of the counting rate.
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Fig. 11.2. Single-RO-differentiated signal, (s} st low counting rates, (b} at high
counting rates (13).

Double-delay-line diffegentiation is less dependent on the counting
rate and pile-up overloading can be minimized.

The preamplifier must be capable of driving the low impedance of
the interconnecting civcuit between preamplifier and amplifier over
the full range of input signals without pile-up distortion due to ata-
tistical bursts, It must be noted that the largest signal from & radiation
detector may frequently be more than a hindred times the smallest
signal of interest. If the amplitude distribution of the latter ia to be
studied, distortion of the resolution can obtain, due to overload of the
linear amplifier. Indeed, the larger signals give rise to extensive
smplifier paralysia followed by & slow recovery. Smaller pulses ooourring
during the recovery interval will not be measured correctly and those
ocourring during the paralysis interval will be lost. '

The change in resolution as & function of counting rate can easily
be observed with semiconductor detectors. Even for relatively weak

WNPUT .———-I } L—: OUTPUT
c

Fig. 11.3. RO circuit with restoring diods (13).



ozy [ (el WUTRON ACTIVATION ANALYSI3
0.065

X-ragy

(o}

0646

N{E}dE

0.065
+
Q129

0.29

— —x40__

A B E(MeV)

2 -
3 (b)

1P 210 310 410°
Tolal Activily (cpm)
Fig. 11.5. Spectra! distortion with counting rate; 7.5 em x 7.5 cm Nal(T1)

flat.ec't.or. Fairstein amplifier (double-delay-line differentiation). (a) Spectrum of
irradiated Os sample. (b} Activity ratio of region A over B.

vy

Froamam sttt ot M mimnees froig ™
such as ion-exchange, electrophoresis, electrodeposition, « "The
isolated fraction is then counted and if necessary, the chemical yield
is determined. For each result, o}, (sample) and o3, (irrad) are, of
course, identical. Hence, for the sanalysis of these sample aliquots,
o3, (T) = oy, (chem) + o}, (count), where o (count) can be found as
described under (3). This allows the estimation of o3, (chem). o}, (chem)
+ of, {count) can also be estimated from tracer experiments in exactly
the same experimental conditions and o%; (chem) is deduced as described
above.

(6) From (1}, (2)-or (3) and (4)-and (5), o} (sample) can be
estimated using equation (11.7). :

(7) For short-lived radioisotopes, where no chemical treatment
ocours, oy, (chem) = 0; of,(T') is found as under (1): o3, (irrad) + o3,
{count) follows from repeated analysea of the same sample. Since
o%, (count) can be estimated, o, (irrad) can be calculated. From equa-
tion (11.7) follows then o3, (sample).

Obviously, the largest o3, is the determining factor of the precision
of the results and this stage should possibly be improved, if a better
precision is required. It must be borne in mind that a similar o5, (T)
exists for the standard or comparator.

II. Counting Statistics

(A) Bmvoamal DISTRIBUTION

The radioactive decay has a statistical character. If a radionuclide
is counted several times in identical experimental conditions, different
counting rates (number of counts per unit time, R) will be observed,
even for a very long lived species. These fluctuations follow statistical
laws. It can be shown (15) that the probability P(d) of obtaining d
disintegrations in & time A? from N, original radioactive atoms is given
by the binomial distribution:

N '
P(d) = m[l — exp (—AA)F [exp (—AANP¢ (11.8)

where [1 — exp (—AAz)] is the probability of an atom disintegrating
in a time A? and exp (—AAl) the probability to survive the time As,
The expected average number ¥ of atoms disintegrating in the time At is

N = N {1 — oxp (—)AS)] (11.9)
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The expected av__age number of observed counts with a detector is
¢ = Nz, where z is the detection efficiency.
For small values of A\, ie. At <€ Ty, equation {11.9) is reduced to

§ = Npat (11.9a)

As the disintegration rate D = —dN {dt = AN, (sce equation (5.2)),
equation (11.9a) can be written as

D = Fjat ~ djat (11.10)

if a reasonably large number of counts has been obtained during the
time At

Note: When the decay of a radioactive sample is followed as a function
of time, the counting rate R = c/At is usually taken to represent the
activity at the midpoint of the interval Az, i.e. at & time ¢; = ¢, + 0.5AL
This approximation is only valid if At & Ty, If however At > Ty,
the mean counting rate B = ¢/At will represent the activity at a time
ti =ty + fA? where 0 < f < 0.5, Indeed, from equation (I1.9) and
(11.10) follows that the average observed disintegration rate for the
counting interval At is given by N1 — exp (—AAt)]/At. On the other
hand, the true disintegration rate at a given moment ; = ¢, 4 fAf is
—dN/dt = AN = AN, exp (—AfAt). From this it appears tha't.:

exp (—AfAl) = [1 — exp (—A!)]/AA

which allowa us to calculate f, i.e. the moment at which the mean rate
is equal to the true one:

— exp (—0.603 AT
—0.603 fAYTy, = In[l exp (—0.603 At/ m)]

0.6035/T,,
or
3.322 0.893 AYfT,;,
= 5822 iLll
VT [1 — exp (—0.693 AL T ) (LI

Some calculated values for f are given in Table 11.4. More numerical
data are given by Hoffman (16).

TABLE 114
Correction factor f (equation 11.11)
AT, 4y 0 1 2 3 4 5
J 0.500 0.472 0.443 0.416 0350 0.368

-

i
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Another approach is the introduction of a factor F, whicw ows
the caloulation of the true counting rate at the start of the counting.
The true disintegration rate at , is given by —dN/d! = AN The
average observed disintegration rate is N1 — exp (— AAf)]fAS, hence

AN, = FN (1 — exp (—MA))/A
or
06084 1
Tys = 1 — exp(—0.693 At{T,,)

The larger A{T';4, the larger F. This correction factor is represented in
Figure 11.6 (17). .

It will be noted that if the observation time Al is less than about
1.59, of T';,, the correction is less than 0.5%.

Fe (11.12)

{B) ExPECTED STANDARIL DEVIATION
In the case of redicactive disintegration it can be shown (15) that
o = J{NJl = exp (= M) z[1 - z + zexp (=AAf)]} (11.13)
where [1 — exp (—AA#)] is the probability of an atom disintegrating

At/ Tuz(CuM m
o] 005 00 el

‘160 1030
:g: 150 lI/ / 1025
o I VA e

/A
Lo~ 1005
4 3 a2 3 " " e & lm
! 000 Q5 10 15
AT, (Cunel)

Fig. 11.6. Correction factor ' as & funotion of AffTyq {17).
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in the time Af; [» - exp (— AAt)] z is the probability of a disintegration
resulting in an observed count in the time Af; [1 — z 4- 2 exp (—AAl)]
or 1 — 2[1 — exp (—AA!)] is the probability of an atom not resulting
in an observed count in the time Af. Substituting equation (11.9) into
equation {11.13) one obtains:

o= J{Nl - z + zexp (—)AY]} (11.14)

Usually At € T'y/,, thus At <€ 1 and exp (—AAf) = 1 — MAZ henco |

o = /(Nz) = ./(number of counts) (11.15)

Ezample: If 10¢ counts are recorded, o = 103 or oo = 1%. The
standard deviation for a given counting rate R (cpm or cps) is given by:

Rz JRz  /RA R
B=—,tl = P e N L .
ALt SRS T At \/ Al (11.16)
If At> Ty, AAE 3> 1, exp (—AAl) € 1, hence equation (11,14) is
reduced to
o =Nl —2) (11.17)

Thus, if At is long enough to allow all atoms to decay, and if the
detection efficiency z v 1, tie number of disintegrations is exactly
known, and ¢ = 0.

If however z < 1, the above equation (11.17) becomes ¢ = JNz =
J/(number of counts).

When AAZ ~ 1 and 2 is neither urity nor very small equation (11.13)
must be used.

(C) PorssoN DisTRIBUTION AND NORMAL OR GAUssiaw DISTRIBUTION

The binomial distribution may be replaced by the simpler Poisson
distribution (15). The probability P{d) of finding 4 disintegrations is
then given by equation (11.18), where X is tho average to be expected
(equation {11.9))

R
P(d) = =7 °*P (-3 (11.18)
on condition that AL €1 (<0.01) and Ny 1 (=100).

The abave distribution law is also valid for very small disintegration
rates, such as D = N/At = 10 dpm. Note that, for small disintegration
rates, the distribution is not completely symmetrical around d = X.

||
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|
For N (or d) > 100 and ¥ = d, the Poisson distribution can ve
replaced by the normal or Gaussian distribution:

1 [ @&
= Jenm) P 2N
The normsl distribution is symmetrical around d = ¥, as is the
Poisson distribution for large XN,

For both the Poisson and Gaussian distribution it can be shown that
for d large and AAL L 1:

ou= I 5 b o= B o o0 =30 = [T

a£=—'JM

where ¢ and d respeotively represent a number of counts and dis-
integrations, and R and D indicate respectively a count rate and &
disintegration rate.

The above discussion applies as well to the background activity as
to the sample activity to be measured. If the number of counta of the
background ¢ is sufficiently large (\/cs > 1), the Poisson distribution
of the background practically coincides with the normal distribution.
Therefore the net count difference cg = ¢g — ¢g also obeys the latter
(C refers to sample plus background, B to background alone, § to
sample).

Nole:

—For small values of ¢g (= 4) this difference does not chey the Poisson
distribution, but obeys & more complex distribution (18).

—If n observations are carried out, yielding ¢,, ¢, ... ¢ counts, the
standard deviation for one observation can obviously also be calou-
lated by equation (11.3 bis):

_[Ee =ty
"[zn_—l]

where & represents the arithmetic mean of the » observations.

The statistical error given by this equation and that given by
equation (11.15) should agree if the exporimental data are truly
statistical, If the equipment has produced counts {spurious counts,

P(d) (11.19)

(11.19a) .

(11.20)
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electrical noise, ete.) it would be noted that the positive and negative
values of the residuals ¢ — & would nobt occur with about equal
frequency, and the standard deviations calculated in the two ways
would not agree. If a small difference is found between the results
of equations {11.20) and (11.15), a x*-test can be performed to find out
whether the difference is significant or merely due to the finite number
of observations.

(D) STawparp DEVIATION FOR RATEMETERS AND IONIZATION
CHAMBERS

According to Kip ¢ al. {19) the standard deviation of the counting
rate may be estimated from the relation:

o = JRjZk{t) = 0.71 \/Rjk(t) (11.21)

where R is the average pulse rate (in cps), and k{t) = RC, the time
constant of the circuit (R in chms, € in farads). The fractional standard
deviation of a single reading is

ol B = (QRE(t))-V* (11.22)

Hence, knowing k() and determining R by calibration, the standard
deviation may be assessed. If k(t) is not known it may be estimated
by observing the recorded activity as it falls to zero after an active
source has been removed from the counter. k() is equal to the time
necesasary for the observed reading to fall to 1/e {ca. 379,) of its original
value. If k{t) is determined in this way with & recording ratemeter, the
pen drag should be reduced to a minimum,

I. Counters and Background

In practice, the activity of a source must be estimated by the differ-
ence between the observed activity, obtained with the source present,
and the natural background activity in the absence of the source.
Hence the rules for error propagation (see Table 11.3 (1)) must be
applied, If the total number of counts cbtained in a given period in
the presence of the source is 400 and the natural background gives 64
counts during the same period, then the expected standard deviation
a of the net result, obtained by the difference 400 — 84 = 336, is

11, STATISTICAL INTERPRETATION OF RESULTS & ‘“éy

given by [(400Y/3)3 4 (643/2)%)1/% = (464)¥3 = 21.5. Hence the activi.y
of the source is 336 + 21.5 counts.

The final precision is thus determined not only by the n.cuvxt.y of the
source and by the background activity, but also by the counting times
Al and Alp.

If only a limited measuring time is available, e.g. because large
series of samples must be counted, the choice of Aty and Az becomes
important (C refers to sample plus background; B to background alone).
The choice of a detector with & suitable signal to background ratio is
also of interest, particularly when the counting rates are low and when
the counting rate of the sample Rg = Eg — Rp, is smaller than the
background rate Rz In the following discussion, the sssumption
Ate < Ty, is made.

(A) Cuolck oF AlcfAlp -

According to Table 11.3 (1) and to equation (11.16) one can write:
v(S) = o¥{(8) = o*(C) + o*(B) = RofAlc + RgpfAty (11.23)

The fractional standard deviation a7 = o« /100 of the mea.surement Rg
is given by
of o%{8) -
J Rﬁ
where r = Rg/Rp.

To use a counter efficiently one must choose either Alp/T for a
fixed total time T = Alp + Afg 60 83 to reduce ¢y to & minimum,
or Atc/T for a fixed ay to reduce T' to & minimum, Both criteria are
equivalent and lead to the same result, Using the first criterion for &
given set of sample and background rates (i.e. Bz, Re, r and T given),
Ate must be chosen 80 as to reduce the nominator of equation (11.24),

r/Atg + 1T — Atc)

to a minimum, Thus the derivative of the nominator with respect to
Alc must be zero:

RefAle + RpjAlp - rINo + 1fAlg
(Bg — Rp)? Rp(r — 1)

(11.24)

—rfA% + 1T — Alg)* =0
or , '
MolAlg = vVt =

(Bo/Rpp* (11.25)

and

Alef(Ale + Atg) = Alg]T = r¥i3)(1 + ri/3) (11.26)
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The optimum Afg{Alp ratio as & function of Rg = Re — Rp and of
Ry can be read from the nomogram in Figure 11.7 (20).

Substituting for Aip and for Atp in equation (11.24), the minimal
fractional standard deviation gy for a total counting time 7' becomes:

2 [PU3(1 4+ PUDYT + {1 + r¥2YT LM 4 1)

11.27
4 _ Rp(r — 1)2 TRp{r — 1)3 ( )
RsRe Ry Ry
{ep.m, or cp.s.) {c.p.m. or cp.s.)
10,000 :
T O
5,090 Ate
2,000 02
1.000 - s
500 - 05
200 .E. 10
100
50 " 20
20 i
- 50
10 :
5 E o
2
- 20
1 !
05 [
- 50
0.2 3
6l £ wo

Fig. 11.7. Optimum A#,/Al, 88 & function of background rate B, and counting
rate Ry = R, R, (20).
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or
of = QT (11.28)

where

(r¥s + 1) (rV8 4 1)3Rp

Rp(r — 1)2 R
Equation (11.27) can also be written as follows:

1
| 7T @ =1)JTRs

since {r ~ 1) = (4 + 1) (/2 — 1).

Hence,
RYt = (1 + opJTRa)fo/T
so that for the net count rate of the source (Rg = R¢ — Rg): _
Rg = (t + 207/ TRy)}T (11.30)

Equation (11.30) expreases the minimum observable counting rate of
the source which will have a fractional standard deviation o7, when
recorded with a counter having a background Rz for a total time T,
optimally divided between Afc and Alg,

(11.29)

Ezamples:

{s) Bo = 178 cpm, Ry = 39 cpm, Rg = 137 opw, r = Ro/Rg =
4.51, Alg[Alp = r¥% = 2,12, Afo|T = 2.12{3.12 = 0.68,Q = 2 x 10-%.
If 7 is fixed at 100 m, of (min) = 2.05 x 10-4, oy = 0.0142 or oy, =
1.42%, i.e. with optimal time division (Al = 68 m, Alg = 32 m) the
minimal possible percentage standard deviation is 1.429%,.

{b) Requiring for the same sample & percentage standard deviation
of only 3%, oy = 0.03,0} = 9 X 1074, T,y = Qfof =~ 22m (Alg =
15 m, Afg = 7 m). .

(c) When counting for a total time T' = 100 m in optimum conditions
the minimum counting rate Bs, which can be recorded by this counter
with a standard deviation of 39 is (1 + 0.06J3900)[9 x 10-* x 100
= 473.8/0 ~ 53 cpm.

The optimum time division in this case is Alg ~ 60 m and Al ~
40 m.

If the sample rate is much higher than the background rate (Rs >
Rp), equation (11.20) can be simplified, as r1/3 4 1 = ri/s

Q = rRp/RY = Ro|RY =~ Rs/R% = B3} (11.31)
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If however Rs <€ Rg, t¥* 4+ 1 ~ 1 + 1 = 2; hence
Q = 4RafR% or 1/Q = REjasip = M3 (11.32)

M is called the figure (or factor) of merit of 4 counter in the region
where the background is important (see further)

M = Rs/2,/Rp (11.32a)

From equation (11.28) follows that the condition for minimal oy (fixed
T) or minimal 7" (fixed oy) is that @ be a minimum (1)),

(B) Cuoice oF CoUNTER WITH MINIMAL-Q CRITERION

The minimal-Q criterion allows one to choose the best among several
counters or among several operating conditions.

If the ratio of the counting efficiencies for sample and background
is & constant while the sensitivity is changed (r, = r,), it appears
from equation (11.29) that

Q.0 = RmR?sJRBszsz = Rg)/Rgy = Dgz,/Dszy = 21f2g

since Ry, [Rg, = Rpo/Rge. Only the efficiency determines the quality
of the counter. If z, > z,, then @, < @,, so that on the basis of the
minimal @ criterion one can conclude that counter 2 is the better
one. In this case it is always advisable to increase the efficiency z as
much as possible,

If the ratio of the efficiencies for sample and background is not
constant with changing sensitivity (r, # r,), both R}/ Rz and r depend
on the counter.

If Rs>> Rp (r >> 1) for both counters, equartion (11.31) can directly
be used: '

9 En Dt _n
& Rsy  Dszy 2,

Under this condition the background is unimportant and, again, enly
the ratio z)/zy determines which counter is superior. For high dis-
integration rates one should choose the instrument with the highest
efficiency.

If Rs < R {r = 1) for both counters, equation (11.32) can directly
be used. Counter 2 will be superior to counter 1, if Qs < Q,, ie. if
M, > M,. In that case M is a suitable figure of merit, consequently

l1l. STATISTICAL INTERPRETATION OF RESULTS i .fl.

both Rg (=Dgz) aud Rp must be considered to judge what counter

should be chasen.

Use of the above expressions for comparing detector sensitivities
generally involves the replacement of Bg by the product of the sample
digintegration rate Ds and the detection afficiency z. Various detectors
are then compared by examining their ¢-values. Such a procedure
suffers from a number of limitations (21):

(1) no allowance is made for short lived radicactivity;

(2) interference —especially “decaying” inferference—~is not con-
gidered; ’

(3) the formula may not be applicable {o the comparison of eritical
levels or detection limits (see further), because type 1 and type 2
errors have not been included.

(4) the factor A can only be used on condition that Rg <€ Rp. This,
factor could lead to & wrang conclusion for wp and wg (see further),
This means that the exact equations of the form twp = yLp can
lead to the conclusion that with one detection system the lower
limit of detection is reached, but that with the other one the lower
limit of determination is obtained.

IV. Limits for Qualitative Detection and Quantitative Determination
Applied to Radiochemistry and Activation Analysis

{A) INTRODUCTIOR

Examination of the analytical and radicchemical literature for an
appropriate deficition of the “detection limit” reveals a plethora of
mathematical expressions and widely varying terminology, as was
pointed out by Currie (21). One encounters for example terms such as
lower limit of detection (22-25), detection sensitivity (26}, sensitivity
{27}, minimum detectable activity (or mass) (28) and limit of guarantes
for purity (20) - all used with approximately equivalent meanings. The
nomenclature problem is compounded, because other authors make use
of the same or very similar terms to refer not to the minimum amount
that may be detected, but rather to the minimum amount which
may be determined with a given relative standard deviation. Still other
expressions, such as the "‘detection limit at the 959, confidence level”
are used without explicit mathematical definition, which leaves the
meaning rather ambiguous. Moreover, varicus “nonstatistical” defini-
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tions appear in . aich the detection limit is equated to the background,
10% of the background, 100 dps (y-radioactivity), or 1000 dpm
(a-, B-, y-rudioactivity). In order to compare some of the mcre common-
ly used definitions, Currie (21) lias calculated “detection limits” for a
hypothetical experiment in which a long lived y-emitter was counted
for 10 minutes with an efficiency of 10%, using a detector with a
background of 20 cpm. The results, plotted in increasing order in
Figure 11.8, are unsatisfactory, for they encompass nearly three orders
of magnitude! C

In the subsequent discussion, a distinction will be made between

-

C

{counts)

T T F Frryr

o
% LQ(c)
g .
i}
81& E o LD(C)
i o LC(c]
- )
- o
o
0

1 2 3 4 5 6 7 a
Definition
Fig. 11.8. Comparison of some commonly.used definitions of datection limit,
when counting & long-lived y-emitter for 10 m with an efficiency of 109, using a
detector having a background of 20 cpm. Definitions: 1, Background standard
deviation a,; 2. 109 of the background; 3. 20,; 4. 30,; 5. Jo,+30, (o, = sample
standard deviation); 8. Twice ths background; 7. 1000 dpm.; 8. 100 dpa. (21).
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three specific levels, a3 proposed at the National Bureau of Stanu. J)
(21). (i) & deciaion limit (critical level): Lo (L¢(c) counts or Le(R) cpm);
(ii} & detection limit: Lp (Lp(c) counts or Lp(R) cpm); (iii} & limit for
quantitative determination: Lg {Lg{¢) counts or Lg(R) opm}.

In the following paragraphs the nature of these quantities will be
discussed in detail, taking into account the half-life of the radioisotope
of interest, the detector background (in the energy region of interest),
the optimum counting time in the case of short lived radioisotopes
and the required confidence lavel. The results wili also be applied to
coincidenco counting.

It is obvious that the statistics of decision, detection and deter.
mination apply directly to the observations (activity) rather than to
the underlying quantity and therefore the following discussion will
deal specifically with the observed signsl and its associated random
distribution. Statistical conclusions drawn in terms of the net aignal -
may be extended to the related physical quantity by means of a calibra.
tion factor. In analytical practice it is convenient to express the
“lower limit of detection™, , ., . in terms of the mass twp of the element
to be detected under given irradiation and measuring conditions:

wp = yLp(R) or wp = yLp(c) . (10.33)

If Lp is a counting rate, the calibration constant y is expressed in
gram (milligram, microgram) per opm or per cps, and depends on the
neutron flux, the isotopic abundance of the target nuclide, the atomio
weight of the target element, the reaction cross section, the irradiation,
and waiting time, the disintegration scheme of the radionuclide formed,
the counting geometry, the efficiency of the detector and the fraction
of the pulses which are counted. The factor y can thus be caloulated
from equation (10.1), if the parameters of interest are known.

If Lp is a number of counts, the calibration constant y is expreased
in gram per count,

Tables with caloulated 1/y-values can be found in references {30,31).
The count rate per minute per microgram of target element, obtained
by 4w beta and alpha counting, single-gamma counting, gamma-gamma
coincidence counting, beta.gamma coincidence counting and triple-
coincidence counting were computed by Wing and Wahlgren (30) for
irradiation times of 0.5; 5; 50; 500 and 5000 m at & thermal neutron
flux of 10 n cm~? 51,

Induced activities (opm/ug) as a function of irradiation time and of
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waiting time arv also given by Girardi (31), taking into account the
detection efficiency of 8 7.5 x 7.5 cm NaI(Tl) detector for the geometry
and the photopeak used. The data are given for thermal meutron
fluxes of & x 101%; 10%* and 2 x 10'* n em-? s~l. Experimantal
regults in epm under the photopeak per gram element for single-gamma
counting are given by Anders (32) for an irradiation time of 5 m at a
flux of es. 10% moderatad n om=3 8- and by Yule (33} for an irradiation
time of 1 b at & thermal neutron flux of ca. 4 x 1012 n cm=% g~1,

(B) DeFINTTIONS - S1exAL DETECTION

If the observed number of counts from a sample + backgreund
and from the background alone, for an equal time of measurement A#,
are respectively cg, p and oy, then the count difference cs = cg,5 — ¢p
is a measure of the net activity of the sample. However, owing to the
statistical fluctuations, this count difference at the averages of the
background &g and the sample &5 may obtain various values. At a
relatively small value of ¢s, the presence of the activity in the sample
becomes doubtful. Therefore a so-called “critical value” Lg is intro-
duced, that is often called in the literature the “minimum significant
count difference™ (22,25) or “decision Limit" (21). For eg > Lg one
assumea that the signal ia present, for ¢g < Ly the decision “not
detected” should be reported. The statistical character of the count
rate means that such an assumption must always be connected with

& probability of making a wrong decision. Two kinds of errors may

oceur:

(i) The measured valus ¢s > Lg¢; one concludes that the activity
>0, when in fact the activity = 0 (type 1 error). The probability P,
of making this error depends on the accepted value of L¢ = ,0(0)
{Figure 11.9 curve a).

{ii) The mersured value ¢g < L¢; ono concludes that the activity =
0, when in fact the activity >0 (type 2 error). Such a case is illustrated
in Figure 11.8, curve b. Despite the fact that the signal >0, a
relatively large probability P, exists, that the measured count differ-
ence <Lg¢. The probability P, of making this error depends on Lg¢
and on the sample activity, i.e. on the position of the Gauss curve on
the cs-axis.

For es = Lp (Figure 11.9 curve c¢), the probability of making the
type 2 error is already so small, that the signal will practically always

b g
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be detected, The smallest activity, corresponding to the value _ _, is
called the “minimum detectabls true activity” and will be identified
with the “lower limit of detection” (22).

The foregoing discussion can be summarized as followa:

(i) if the result of & counting yields a count difference cs > Lg,
one can conclude (a posteriors) that the activity is present.

(ii) if an activity cg = Lp is present in the sample, one knows (e
prior) that the analytical procedure may be relied upon to lead to its
detection.

1. The Critical Level or Decision Limit

As appears from Figure 11.9, the critical level is mathematically
given by .
Lg = u,0{0) (11.34)

The parameter %, is & multiple of the standard deviation, determining
the probability of making the type 1 error. Usual accepted values for
u, are 1.645; 1.060 or 3.000. Contrary to Table 11.1, this does not
correspond to & confidence level of 90, 95 and 88.73%, reapectively,
but to a confidence level of 95, 97.5 and 99.865% respectively. Indeed,
the probability of making the type 1 error is respectively 10/2 = 5,
5/2 = 2.5 and 0.27/2 = 0.135%, only (one aide of the Gauss curve).
For that reason, the symbol  has been replaced by ,. The problem
of the confidence intervals is discussed in detail by Currie (21).

a Typel
error
{}}
0" Lclc) %5 "5
o, 0'7(0)

b c
1
P(2) y,o(0) m‘./\‘i\

0| Lo Lylc} 5
P{2)
Fig. 11.9. Signal detection. Definition of critical lovel Lo{s) w p,0(0) detection
limit L (c) = Lglc)+p,0(D) and determination limit Lyfe) = kquq (21).
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The variance .ur a count difference .cg = ¢s.B — cp i3 given by
o*(8) = oS + B) + o*(B) = (cs + 2¢p). If no activity is present,
¢s = 0 + o(0) where o(0) = ,/2¢c5. Hence, the critical level is given by

Lefe) = uy\/265 = u;\J2RgA!  (counts) (11.35)

where cp i8 the number of background counis and Ry the {average)
background rate. When dealing with low activities, equation (11.25)
is reduced to Alg & Atg = At = 0.5 T'. Equation (11.35) is valid for
so called paired observations.

If the background is constant, and very well known by & long
history of observations, one can state that ¢3(S) ~ ¢S + B) = ¢5 +
¢g. If no activity is present, cs = 0 + o(0) whers o(0) = \fca. Thus,
by measuring the background during a long time (3>Af), one can
decrease the critical level by a factor (/2. Then

Li(e) = uy\Jep = u, f/RpAt  (counts) (11.35a)

where the prime serves as a reminder that the background is well
known.

The corresponding “minimum significant counting rate differenccs”
L¢(R) and Lg(R) are thus given by

Lo(R) = Lc(c)/At = u;.f(2R5[Al) {cpm, cps) (paired observations)

(11.36)

and
Lo(R) = Lgle)/At = uy,f(RpjAl) (cpm, cps) (well known background)
(11.36a)

For short lived isotopes L(R) represents the average minimum signifi-
cant counting rate difference (see further).

2. The Lower Limit of Detection

Mathematically, the “lower limit of detection”, which is used to
assess the @ priori detectability, is given by
Lp = L¢ + u,0(D) {11.37)

as appears from Figure 11.9. To simplify the discussion the same
parameter u; will be used to determine both the probability of making a
type 1 and a type 2 error. In the above equation, o{D) represents the

L N e i T L ] y-

standard deviation of & number of counts e¢g = Lp:
o¥D) = o¥0) + Lp
Hence, equation (11.37) becomes:
Lp = Lo = u,(e*(0) + Lp)*/2
(Lp = Le)* = wio*(0) + uilo
Remembering that Ly = u; o (0) one obtains:
Lp(Lp - 2L — u}) == G
or
Lp = uf + 2L¢
Thus:
Lplc) = uf + 2u, /25  (counts)
(paired observations) (11.38)

L(e) = u} + 2uyfep  (counts)
(well known background) (11.38a)

The corresponding counting rates are given by:
Lp(R) = u}At + 2u, f(2Rp/&t)  (opm, ops) (11.39)
Liy(R) = ulAt + 2u,,/(Rg[Al) (cpm, cps)  {11.39a)

For short lived radionuclides (andfor) background activities, Ip(R)
andfor Rp represent average counting rates (see further).

From these equations, the following conclusions can be drawn:

(i) The longer the counting time, the lower the limit of detection.
Such long measuring times are obviously limited to long-lived isotopes
and may be of interest in the cass of long activation times (several
hours or days), i.e. in the case of reactor activation analysis, Extremely
high sensitivities can be obtained in thig way.

(ii) The limit of detection depends on the accepted confidence
level (u,).

(iii} In many practical cases, u} < 2u, fcp, 8o that Lp{c) = 2Lc(c)
and Lp(R) =~ 2Lo(R) (see example further).

(iv) In the case of zero background, it should be noted that Lp{c)
or L) is not zero, but u (counts), and Lp(R) or Lp{R) = ul[At (cpm)

Using equation (11.30) and assuming A¢ = 0.5 T', it is possible to
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calculate the fractlohal standard deviation of Lg{R) or Lp(R). For
L¢(R) one finds

1 + 20, /(2R5AY)
2U1At

= u,\/(2Rp[Al) (11.40)

Solving for oy leads to
1+ 1+ 2uy/\/(2RpAL] Y2
N 2u,

If the background is not too small, i.e. 2u,/\/(2RsAY) € 1, a7 = 1fu,.
At the 959, probability level u; = 1.845 (see above), so that oy, ~ €0%,.
For Lp(R) one finds as; 2 30%, at the same confidence level.

(11.41)

3. The Limit of Quantilative Determination

The above data for oo (Lc) and oe{Lp) are not entirely satisfactory
for a precise quantitative determination. It is obvious that one can
calculate a “detprmination limit" for a desired percentage standard

deviation (21). Such a definition is similar to that used by Adams et al. .

(34), who gefined a “minimum working concentration” sa that at
which the percrntage standard doviation is 109, as far as counting
statistics are involved. The term on the left of equation (11.40) expreases
the minimum observable counting rate due to a radioactive source,
which will have & given oy, when recorded by means of a counter with
a background rate Ry, assuming paired observations. For ay, = 10%,
ar = 0.1 one finds: ‘

1+ 0.2,/(2R5A0)
0.02 At

Lo(R) = {cpm)

and
Lofc) = Lo(R)At = 50{1 + 0.2,/(2cs)] (counts)  (11.42)

A different approach is given by Currie (21) for A? # 0.57. The results
are however practically equal, if the background is not too small.
Even for Rp = 1 cpm and At = 16 m, the results for L differ by ca.
204, only.

The determination limit is defined as {see Figure 11.0a)

Lq(e) = ko(Q) (11.43)
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o(Q); o(Q)Lglc) = 1fkg = op(Q) is the fractional standard deviation;
a(Q) = (Lq(c) + o*0))}*/%, hence

LY(¢) ~ K Lolo) — 300} = 0

Lglc) = [1 + (1 + 4’;,(0))”’] (11.44)
q

For paired observations, o*(0) = 2c5 = 2RpAl. Setting oy(Q) = 0.1
Lg(c) = 501 + (1 + 0.08 cp)¥/2] (counts) {11.45)
For a well-known background:

or

Liy(c) = 6O[L + (1 + 0.04cp)"/?] (counts)  (11.45a)

The corresponding values for-Lg(R) (long lived isotopes) are found by
dividing by At. For short hved isotopes, Lg(R) represonta the average
counting rate.

Ezample:

For a counter with a background of 10 opm, the values Lc(c),
Lp(e} and Lg(c) will be calculated, assuming & counting time of 10
minutes and a confidence level of 85%, (u, = 1.645)

Le(c) = 2.33,/BpAt = 23.3 counts (paired observations)
or

Ly(c) = 1.64,/RpAt = 18.4 counts (well known background)
This means, if the observed number of counts in 10 minutes for signal 4
background > 123.3 (or 116.4), the decision “‘detected” should be

reported.
Note that this count difference is known with a precision of ¥ 669%;:

Le{c) = 123.3 — 100 = 233 + /2233 = 233 + 15.3 counts (£66%)

Ly(c) = 116.4 — 100 = 16.4 + ,/116.4 = 18.4 + 10.8 counts (+66%)

If one wants to be sure a priori, with a confidence level of 959, that
in the above conditions {R 5, Af) an activity will be detected, the latter
must be at least
Lple) = 2.71 + 4.65,/RpAt = 49.2 counts (paired observations) or
) = 271 + 3.20/RpAt = 35.6 counts (well known background),

!
}

where Lg(c) is the value of the net signal ¢g with a standard deviav. .’
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i.e, ¢5,p = 14v.. {or 135.6) counts. Assuming long lived radioisotopes,
Lp(R) = 4.92 cpm and L{{R} = 3.56 cpm.

If the detection efficiency of the counter is 20°, the limit of detec.
tion is a disintegration rate of 24.6 dpm, respectively 17.8 dpm.

Note that & number of counta = Lp can be measured with a standard
deviation of +329:

Lp(c) = 149.2 — 100 = 49.2 + ,/249.2 = 49.2 & 15.8 counts (+32%)

Li(c} = 135.6 — 100 = 35.6 + ./135.6 = 35.6 + 11.7 counts ( + 32%)

The determination limit, assuming e, = 109, in the above conditions
Lgc) = 50[14+(1 + 8)V/3] = 200 counts (paired observations)

Indeed ¢s = ¢5,8 — ¢g = 300 — 100 = 200 % J400 = 200 + 20 counts
(£10%)

Ly(c) = 501 + (1 + 4)¥/2] = 162 counts (well known hackground)

Indeed: cg = cs,p — ¢p = 262 — 100 = 162 + \/262 = 162 + 18.2
counts ( £ 109}, since the error in ¢p is assumed to be negligible.

It is obvious that lower values for L¢, Lp and Lg will be obtained
when counting for a longer time Af, This procedure is obviously

" limited to long lived isotopes.

It should be borne in mind that there exists a considerable difference
between the lower limit of detection, the lower limit of determination
(which both imply that the identity of the measured activity is known,
ie. that the combined procedure of chemical isolation and/or counting
should be apecific for the radioisotope of interest) and the lower limit
of identification (21,22).

The lower limit of determination can be defined as a “minimum
working concentration”, at which the relative standard deviation is
for instance 10%,. When identification is required, the radicchemical
purity must be checked by measuring the energy of the radiation
andfor the half-life. For that purpose, the counting rate must often
be higher than Lp(R), e.g. one order of magnitude.

4. Application fo Short Lived Radioisotopes and Long Lived
{Constant) Background (simple counting method)

The same equations for Lg, Lp and Lg are valid for short lived
radionuclides, i.e. the same number of counts must be recorded for a
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given background, to obtain the critical level, the limit of dete.. .
or the limit of determinstion. It can be shown however that an
optimum counting time exists.

If at the beginning of the measuring time Af the sample counting
rate is R, the net number of counts recorded after the time Af is
given by

t . R,
os = R.J exp (—N)ds = 21 - exp (—MAN]  (12.46)
0

whereas the (constant) background yields ¢z = RpA¢ counts. During
the decay of the radionuclide of interest, an increasing number of
background pulses are counted. Consequently, there will exist an
optimum measuring time, which allows the detection of the smallest
starting rate R, in the presence of & constant background rate Rs.
According to equation (11.36) one can write for the “minimum
significant counting rate difference” (eritical lavel) at § = 0:

L"‘f)“ [l — exp (—AA2)] = u,/2RpA
or
Lo(R), = % (paired observations)  (11.47)

Lc{R), is & minimum if the derivative of this equation with respect
to Al is zero, i.e. 0.5 [1 — exp (—AAH] u, )\ /(2Rp)A4-32 -4, A% /(2R5)
AY3 exp (—AAL) = 0, or exp (+AAtf) = 1 4 2AA% The result is:

At = 1.81 Ty, (11.48)

The same solution will obviously be found for the “minimum detect-
able counting rate” (=lower limit of detection) Lp(R), &t ¢ = 0.

It can be shown that the limit of detection reaches & minimum
for At = 1.81 7', if the condition #, < /(RpTy,) is fulfilled (22). For
small values of RpT,, (i.e. the background observed for A2 m T'y/e)
the optimum measuring time is somewhat larger than 1.81 and depends
on RyT\, (22) (Figure 11.10). A practical example using 5.7 h 134mCy
has been deacribed by Dybezyniski (35).

Substitution of equation (11.48) in equations (11.35), (11.38) and
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(11.45) yields:
Le(e) = 1.9 uy /(R5Ty,) o Lile) = 1.34 uy J(RpTyy) (11.49)
Lole) = u} + 3.8 u/(RaTys) Liple) = uf + 2.7 up /(ReTyy)

11,50

Lole) = 50[1 + (1 + 0,144 RpTy ¥ (11.50)
Lyle) = 501 + (1 + 0.072 RpTy;y)V2]

(11.51)

The ratio cs/ R, for At = 1.81 T, follows from equation (11.46} and is
1.03 T'y;4. Hence:

Le(R)g = Le(e)/1.03 Tyyp = 1.84 uy [(Ru/T;,) (11.52)
Lp(Rjo = Lp(c)/1.03 Ty/y = w181 Ty + 3.6 uyf(Rp/Tyys)
(11.53)

37.5
Lo(R)e = Lg(c){1.03 T,y = -ﬂ (1 + (1 + 0.144 RpT,;)¥7)
13 .

(11.54)

E*:e values for Ly(R),, Li(R), and Ly(R), can Le found as described
ove.
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The “lower limit of detection” in terms of the mass wp of the elen S
under given irradiation and measuring conditions is given by equation
(11.33). Thus: wp = yLp(c), where 1/y is expressed in counts per gram
for a given counting time Af.

One cau also state wp = yLp(R), where 1]y is expressed in cpm per
gram at ¢ = 0. Equation (11.47) has been derived, assuming Afy = AMe.
By measuring the background during a longer time than the sample,
one can obtain at most a decrease in the lower limit of detection and
related quantities by a factor /2.

Ezample:

Assume that the 7.7 m positron-emitter **K is detected by
means of the 0.511 MeV positron annihilation quants using a sodium
iodide arystal with a background of 20 cpm and a detection efficiency
for 3K of 32%,. According to equation (11.48) a counting time of 14 -
m was chosen (21). -

Using the general equations (11.35), (11.38) and (11.45) or (11.40),
(11.50) and (11.51) one finds for %, = 1.645 (05% confidence level,

paired cbservations):

Lo(e) = 2.33 /(RpAt) = 2.33 /280 = 39 counts

Lple) = 2.71 + 78 = 80.7 counts

Lale) = 50 [1 + (1 + 0.08 x 280)¥/%] = 202.5 counts (0% = £10%)
Suppose that an observation of sample + background gives & total
of 310 counts. The net signal would then be ¢ = 310 — 280 = 30
counts, with an estimated standard deviation of /(310 + 280) = 24.3
counts (paired observations). However 30 < Le{c} and therefore such

an observation would lead to the conclusion, “not detected”.
The same result can be found using equations (11.52), (11.53) and

(11.54):
Le(R)o = 1.84 x 1.845 x \/(20/7.7) = 4.9 cpm at ¢ = 0 (or 16.3 dpm}
Lp(R) = (2.71/1.81 x 7.7) + 3.69 x 1.646 J(20/1.7)
= 0,104 + 9.8 ~ 9.8 cpm at ¢ = 0 (or 30.6 dpm)
Lo(R)e = Lglc){1.03 x 7.7 = 202.5/7.95
= 37 cpm at ¢ = 0 (or 114 dpm).
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Considering the same sample as above, the initial counting rate is
given by 30/1.03 x 7.7 = 30/7.95 == 3.8 cpm. This value is <4.9 cpm
and, again, such an observation leads to the conclusion “not detected”,

A quantitative determination {o% < +10%) is possible if the
disintegration rate of 3K at ¢t = 0 iz > 114 dpm.

Until now, the assumption has been made that the background rate
is constant. If however an element is determined without chemical
separation, it must be counted in the presence of the matrix which
can also be radioactive. This is mostly done using simple gamma ray
spectrometry or coincidence methods. If both the activities from the
impurity and the “background” are long lived, the problem is reduced
to case 1. ;

If they are not long lived, but A ~ Ay, the same conclusion is
valid. It has however no sense to choose a At > approximately 2.5 Tyy,,
as more than 809, of the radiocactive isotopes decay during that time,

If the half-life of the background activity is shorter than that of
the radionuclide of interest, it is obviously recommended to start the
counting after the decay of the matrix activity,

5. Application to Short Lived Radioisotopes and Short Lived
Background {simple counting method)

If neither the counting rate of the activated impurity Rs nor the
background rate Ry is constant, the number of counts recorded from
the nuclide of interest is given by equation (11.46). The number of
background counts is given by a similar equation;

¢s = Ryy[l — exp (=2541))/25
Substitution of this equation in equation (11.47) yields

\/(1 —~ exp (—ABAC))
2R ApAt .
R), = ) (11.55)
Le(R), u,\/( Ly, ) 1 - exp {—~aAAY)

AA?
Again, the assumption Alg = Atg = At has been made {paired ob.
servations).

If A> Ap there exists also an optimum measuring time, which
depends on A and on Ag. This time can be estimated from Figure 11.11
{23} which can be compared with Figure 11.10.

11, BTATISTIQCAL INTEREPRELATION OF BRSULLTE v

Agsin the general equations (11.35), (11.38) and (11.45) for Lg, Lp
and Lg are valid, where ¢cp is the number of backgrou.nd counts
recorded in the optimum counting time = k x T';,. Equation (ll.ﬂ?)
can be used to caloulate the critical initial counting rate Lg(R), if
Rp,, is given.

?Fnor a.gl nondestructive analysis, Rp depends on the matrix. Sc.hulze
(23) calculates the matrix (background) counting rate' Ry fo.r ‘sunple
gamma ray spectrometry, taking into account the specific activity per
milligram of matrix element, the decay scheme, the geometry factor,
the total efficiency of a 7.8 em x 7.6 om NaI(Tl) crystal and the
relative distribution of pulses in gamma ray spectra up to 2.7 MeV. '

A nomographic estimation of the detection limits of an element in
complex media is described by Haerdi (36).
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Fig. 11.11. Optimum counting time in the case of different half
signal and background (A> A,). Example: if T'y;, = 2.6 m (s, . . ) and T'yry(B) w
10 m (s, . ..), the optimum counting time is 6 m (s, . . .) (23).
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This proble.. 15 also theoretically discussed by Currie (21).

The determination of optimum schedule end sensitivity for non-
destructive activation analysis in the presence cf interfering activities
is given by Quittner el al. (37,38).

(C) TeE Lower Linrr oF DETECTION AND OF QQUANTITATIVE DETER.
MINATION FOR COmNCIDENCE COUNTING
1. Definitions and General Equutions

Consider a radionuclide in the decay of which time correlated cas.

cades ocour, which can be detected with a suitable coincidence system

(see chapter 10, Section IIT, E, 1). Assume that this activity is to be
counted in the presence of a relatively high “interfering” activity,
such as the matrix activity in the case of a neutron activated sample.
The assumption will be made here that in the decay of the latter radio-
nuclides no time correlations ocour which can be detected with the
coincidence set-up; random coincidences are, however, possible and
these are assamed to be more important than the random coincidences
caused by the natural background.

If the two detectars of the coincidence system record ¢, and ¢4 counts
respectively during a time Af, then the number of coincidence counts
recorded during that time is given by:

cc=¢3+ cp

where C refers to the composite count rate § + B', 8 to the true co-.
incidences and B’ to the random or chance coincidences (+natural
background). Due to the statistical character of ¢, and ¢, the number
of random coincidences cgr can be written as follows (13):

cp = 21c,c,/AL (11.56)

where 7 is the resolving time of the coincidence circuit. C'zr can be de-
termined experimentally by counting the source after “mismatching”
the two channels, e.g. by introducing in one channel some fixed delay
time which is 3> 7. At a relatively small count difference cs = ¢¢ — cp
the presence of the activity in the sample becomes doubtful, Mathemat-
ically, the critical level has been defined as L¢ = %,0(0) (seo equation
11.34).The variance of a true coincidence count difference ¢g = e¢ — cgr
= ¢5,p5 — cp 18 given by ¢?(cs) = e*(cc) + o¥cp).

b
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If no activity is present ¢c = ¢z’ and ¢5 = 0  o(0), where

o{0) = ofcur)\/2 (paired observations) or o{0) = ofca’)
(well known background)

In the case of coincidence measurements, it must be bom? in mmd
that ¢z is not directly subjected to the statistical laws of radioactivity,
a4 is the case for ¢,, ¢4 and cs:

ofe,) = \/515 ofc,) = J‘a'» olcs) = \/"'S
Hencs, it i8 not allowed to substitute o{car) by /ep. Using the laws
of error propagation (Table 11.3), o(cs’) can be caloulated from equation

{11.56)
[olepr)fer])® & [ofe)fel)* + [ofcs)feal

or
1 1 :
ot(op) & oy (— + ——) (11.57)
61 Cs
Hence, the critical level or decision limit is given by:
1 1\v ]
Lele) = u,0(0) = %,cp/2 (c_ + :-) (paired observations)
1  }

< (11.58)

1:)” * (well known random coincidence .
¢

' 1
cle) = witm (E: + e rate + natural background) (11.58a)
and the lower limit of detection: L
Lofe) = + 2Lele) = 1t + 2uscmf2 (H + P
(paired observations) (11.59)
1 1\Y% (well known random
Lp(e) = u} + 2urcer (;,"l- ?,) coincidence rate +
natural background) (11.59a)
After introduction of the counting rates B, = ¢,/Af (first channel)
R, = ¢4JAl {second channel), Ry = c5//A = 21'6,.0.]A3.' .a.nd Le{R) =
Lee)jAt, Lp(R) = Lple)/At (assuming long lived radioisotopes), the
above equations can be written as follows:
Lo(R) = 2u,7/2 [RyRy(R, + Ry)A] (11.60)
H(R) = 2uyr [RyBo( Ry + BBV (11.608)
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and
Lp(R) = u3[At + 4u1'r\/2 [B BB, + R,)jAL)YV2 (11.61)

Li(R) = ul/Al + duyr [RyBy(R, + R)/AV (11.61a)

Equations (11.59a) and (11.61a) oori-espond to N and C in ref, (24)
assuming ¥, = 3.

The limit of quantitative determination ILg{c} is found, starting
from equation (11.44) and substituting ¢2(0) by 2¢}.[1/(¢;) + 1/(c)):
ko = 1/0.1 = 10.

b7 82 /1 1\ve
Lc=.11+[1+-—"—(—+-)]}
ele) 2{ 2t

2 73

0.3 s
Lole) = 50 {1 + [1 + = s (o + cg)] } (11.62)

Similar equations can be caleulated for Ly(c), Lo(R) and Ly(R).

Some interesting conclusions can be drawn from the above equations
(24):

{8) Assuming a counting time of 900 s, & resolving time 7 = 10~-¢ 5,
a confidence level of 95%, (u, = 1.645), channel retes Ry = Ry, = R
= 104 ¢ps and paired observations, the limit of detection Lp(R) = 0.44
cps slthough R = 2rR R, = 200 cps! This means that an activity
of 0.44 cps can be detected even if the random rate is higher by several
orders of magunitude (200 cps). High channel rates R are often en-

countered in nondestructive activation analysis. The effect can be
" explained by the entirely different relationships, defining the sta.
tistical variations of the quantities ¢z and cg, and is easily demon.
strated by introducing numerical values.

For the above example, one finds:

or

¢g = Lple) = 396 counts
cp = 180,000 counts; ofcp:) = (180,000) (2/9 x 10%)*/2 = 85 counts
¢e ~ 180,396 + 835 counts.

Note that the standard deviation of cgr and ¢ is ca. 0.05%, only.
The difference 130,396 — 180,000 = 396 £ ./(85% + 85 + 306) =
396 + 122 counts is thus quite significant. Tlie percentage standard
deviation is ca. 319, as expected (equation 11.41).

In this example it is assumed that the electronie cireuit is working
perfectly. In the case of pulse height dependent jiiter, for instance,

ey

L'D(R} {cps)
3

11, STATISTIOAL INTERPRETATION OF BESULTS o
i

broadening of the resolving time ocours which might lead to a leas .ueal
situation.

(b) From the sbove equations it appears that at an established level
of confidence (given u,), the lower limit of detection will improve if the

_“background” rate Ry = 2vR, R, is low and if the counting time Af

is long (assuming long lived radioisotopes).

(¢) In Figure 11.12 (24) the value of Lj(R) is plotted versus R(= R,
= R,), assuming a counting time A¢ = 900 s, & resolving time 7 = 1 p8
and a confidence level of 95% (u, = 1.845). For low channel rates
(in the case of Figure 11.12, <10* ops), Li(R) is constant, nl. ulfAL,
j.e. the first term of equation (11.61a). Thus, if the sample size or the
neutron flux is increased by & factor of 10, the concentration limit is
improved by a factor of 10. For higher channel rates (> 103 cps), the
value of L/(R) increases more rapidly than R since the slope of tl;e

-
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Fig. 11.12. L5(R) ss a function of channel rates B, = R, = E, allows to
choose optimal sample activity, i.e. optinal sample size and/or optimal neutron
dose (24).
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straight line >1, i.e. further increasing the sampie weight andfor the
neutron flux worsens the lower concentration limit. Moreover, the
detectors and the coincidence circuit may be overloaded. Thus for
coincidence measurements there exists an optimal neutron flux (for
& given sample weight} or an optimal sample size (for a given neutron
flux). Optimalization is obtained (24) if dLy(R)/L(R) = dR|R or

VRiBy(Ry + Ry} = wyf2r /At (11.63)

Then, the lowéat value of L},(R) (well known random coincidence rate
+ optimum sample activity) is given by

Lp(R) = 3 uf/At cps (Af in seconds) (11.64)

From this equation it appears again that long counting times will
appreciably improve the lower limit of detection.

2. Application to Short Lived Radioisotopes and Long Lived
(Constant) Background (coincidence counting)

The same equations {11.58), (11.59) and (11.62) for Lg(e), Lple)
and Lg{c) are valid, as for coincidence counting of long lived radio-
isotopes. It can be shown that there exists an optimum counting time,
given by A = 1.81 Ty, on condition that R’ = 2u,r/ (R, Ry(R, +
R,)} is sufficiently high, e.g. > 10, For smaller values of R’ the opti-
mum counting time At>1.81 Ty, nl. ca, 2.2 for B’ = 1 and ca. 4 for
R' = 0.1 (Figure 11.13 (24)), :

Assuming Af = 1,81 Ty Lele), Lp(c) and Lg{c) can be caleulated
from equations (11.58), (11.59) and (11.62) by substituting ¢, = R, At
=181 B, Ty, and ¢, = R,At = 1.81 R, Ty, The corresponding
counting rates Leo(R)q, Lp(R), and Lg(R), at time ¢ = G are then

Lo(R)y = Le(@)[1.03 Tyyi  Lo(R)y = Lo(c)f1.03 T'yy;
Lo(R)y = La(c)f1.03 Ty,

88 in section IV, B, 4 of this chapter.

Again, there exists an optimun neutron flux andfor sample weight
which allows one to reach the lowest concentration limit. Then, the
lowest L}(R), value is given by (24)

Liy(R)y = 3ulM[1 — exp (~AA2)] (11.65)

| 2
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If both the sample activity and the counting vime At are of. Ally
chosen, then (24):

L’D(R)B ~ 2.5 uﬂTlll 0P8 (Tu. ‘..n Beconds) (11-66)

Optimal counting time A/ and optimal R'-value can be read from
Figure 11.13 for a given T',;, (dashed line).

Example: (see Figure 11,13)

T
R 2R RoRy)

| I A/ / |
| N
Vig

7 S,

Fig. 11.13. Optimal counting time for short lived coincidences and constant
background, The dashed line represents the points with optimal A7 and R’
valuee (24). Ordinate: Ty4slm); abscizaa: R'(s-1/%).



LLL Jll'u;_aﬁ‘u'.l.'.huﬂ AULLYATION ANALXNIY

If T4y = 5 m, the optimum counting time is ca. 14 m and the
optimum sample activity is reached for R’ ~ 0.3.

Assuming r = 10-* s, ¥, = 1.645 and R, = R, = R, this means:
0.3 = 2 x 1.645 x 10-%/(2R%) or R = 1420 ops.

3. Application to Short Lived Radioisolopes and Short Lived
Background (coincidence counting)

Similar expressions can be derived if both the true coincidence rate
and the background (random coincidence rate) are short lived. They
are, however, more complex and will not be derived here. Reference is
;nn.da to Schulze (24). The confidence level is assumed to be 09.865%,
u; = 3).

It can be shown that distinction should be made between two cases:

(a) If T'ys4(B'){Tyyy > 5.6 there exists an optimum counting time,
which depends on the ratio T'y,(B')/T'y,. AtT, is approximately
3 to 5 (see Table 11.5). There also exists an optimum sample weight
{or neutron flux; which allows one to detect the lowest concentration
limit. Indeed, Ry = 6r,/ {RyoRyo(Ry o + Ryg)} (8-1/3) is also func-
tion of T'y/,(B’)/T'y;4 (Table 11.5). &, , and R, , are the channel rates
at the beginning of the counting time.

TABLE 11.5
Optimum counting time and sample activity if both
true and random coincidence rates are short lived
for Ty, (B) Ty, > 5.6

Tin (B'”T:h AIIT,“ R;‘\/TUI
»>25 3 5.45
10 3.6 5.63
6 4.9 5.85

Ezamgple:

Tys=1m, Ty, B) =168 m, Tyy(B)Ty,s = 16 > 5.6. Accord-
ing to Table 11.5, A/Ty, = 3.2 or At = 3.2 m, whereas Rj./Ty, =
5.55, thus R; = 5.55/,/60 -1/t = (.72 8~¥/%, Assuming B, , = R, =
Ry and 7 =1 us: 6 x 10-%,/(2R3) = 0.72 or R, ~ 1930 cps. This
allows one to choose the optimum sample activity at the beginning of
the counting.

L I

(b) X Ty4(B'){Ty4 < 5.6 it is also possible to caloulate the opuimum
sample weight (andfor neutron flux) for a given Al, as appears from
Table 11.6. The counting time At must however be chosen arbitrarily,
as there is no optimum value. A counting time A = 2.5 7'/, allows
one to detect more than 809 of the total number of true coincidences.

Ezample: .

Tys = 1m, Tys{B'} = 3 m, then Py4(B')/Tyyy = 3 < 5.8. Choos-
ing At = 2.5 T'yyy = 2.5 m = 150 a, then At/7;4(B’) = 2.5/3 = 0.83
and Ry /At = Ry f150 = 13.5; Rj = L1~V = 6 x 10~* \/(R,  R,,
(Ryo+ Ryg)} (if 7= 1 ps). Assuming R, = R, o = R, one finda
3 R} = 33 x10° or B, = 2500 ops.

TABLE 11.6
Optimum sample activity as & function of counting
time, if both time and random coincidence ratea are short
Lived for Ty, (B')[T'ys < 5.6

Aty (B ‘0 1 2 8 4 &
Ri/As 8 14 19 245 %20. 33

V. Linear Equations
(A) GENERAL CONSIDERATIONS

In analytical methods, one often needs to determine the parameters
a and b of a linear equation

Y =a+bs (11.67)

with associated statistical errors + uo{a) and +uo(b). The least squares
method for fitting a straight line to a series of experimental points is
well known, on condition that the experimental errors in z are small
compared with those in y and that the z-values cover an adequate
range. The former requirement is met in the examples given below,
nl (i) study of a decay curve, z = ¢, the times at which the activities
are observed; (ii) addition method of analysis, x = weights added to
the sample, which are only affected by small weighing and/or diluting
errors. The y quantities however have all the procedure steps as a
source of variation (case (ii)) or are at least affected by the statistical
character of the activity counting (mostly >19%, case (i)).
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For a set of » measurements, the best estimates of b and a are

Z IV: Z Ifo(y{ - E IV(.‘E{ Z W‘y;

lope: b =
slope 5

oW — 35y W

Y Weai -2y W, (11.68)
intercept with ordinate:
Y Wy — 3 I
oo 2 VY Wi DE @) Weag - b5 (11.60)
where
DN | 4 }: Wiz .
V=5 ; £—- {cf.equation 11.2)
Z Y Wy
and
D=3 Wy Waj - (3 Wiz;)? {11.70)

Wy is the “astatistical weight”, which is inversely proportional to the
variance of the corresponding measurement ¢ {definition):

= Afo? (1L.71)

where 4 is & constant, arbitrarily chosen to make the values of the
weight convenient for computation, e.g. 4 = 1. It can be shown that
4 cancels out and does not influence the results. For data that are
only subjected to counting statistics, W is determined by the number of
counts. For other data, weights are determined from the scatter of the
data (see section V, C).

The above formulas make the sum of the squares of the residuals
Y Z} =3 Wi (¥ — y)? a minimum. ¥;is the value caloulated for a
given z; using the best estimates of b and a (equations 11.68) and
(11.69)); ¥ is the corresponding experimental value of y at z = =,

Standard deviations can be calculated from the following formulas:

o¥(b) = AT Wi/D (11.72)
o¥a) = A Y W} D (11.73)

Confidence limits are *uo(b) and # ua(a) in agreement with previous
definitions (see Table 11.1).
Two practical examples will be given below.

—

e e e

by N e d b L -—at

W e - . -~
e ?

1. Buckground Negligible

(B) Decay CunvE (single component)

The equation R; = R, exp {—A!) must be mede linear by the
logarithmical form: ln R; = In R, ~ M. In terms of equation (11.67)
this becomes y =In R,z =, a = In B and b = = |

If at & time #, ¢ counts are recorded during & counting time Al;,
the counting rate is Ry = c¢i/Al; at the time ¢ 4 0.5 Al (assuming
Aly & Ty, seo section II, A) and the transform is y; = In Ry. Accord-
ing to equation (11.18) one can write:

o} R) = cht’ RAY(AL = R;[At;

An estimate of o2(y;) is possible usiug the laws of_error propa.ga.tmn
{see Table 11.3, item 6).

ot(ys) = oX )R} = URAL = 1oy (11.74)
From equation (11.71) it follows
Wy = Ajo}{Ry) = Acy (11.75)

The simplest method of determining a- half-life with caloulable .
statistical precision (=saccuracy if the sample is radiochemically pure
5o that the exponential decay of a eingle radicactive species is the only
factor causing the change of the counting rate) is to measure the time
necessary to obtain a preset number of counts during each of the n
observations (“‘preset count” mode of counting). Then all ¢ = ¢ =
constant and all observations have the same weight. If this weight is
arbitrarily set = 1, then 4 = 1/¢ (from equations {11.71) and {11.75))
and ¥’ 1y = n. Equations (11.68), {11.69) and {11.70) are then reduced
to:

b==A=(mY R —Y ) nR)D (11.76)
a=lR=3Q8YR-Y4YlbR)D (11.77)
D =aY - (TP (11.78)

The variances are respectively:
i a2(b) = o}()) = njeD’ (11.79)
o¥a) = o¥(ln RBy) = Y }feD’ - {11.80)
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The standard duriation of the half-life can be calculated using items
3 and 4 in Table 11.3 (r = —1 and @ = 0.693):

T\rq = 0.603/A
Thus s
BL”’) ~ o) or a{Ty,;) = 0.603 o(X)/A* (11.81)
T A

It must be borne in mind - particularly if the “preset count”
method is used - that R; represents the count rate at the time 4 + 0.5
Ak (if Ay <€ Ty,) and not at the starting time. Since increasing
periods of counting may be necessary as the counting rate falls, this
method is not recommended for the determination of short half.lives,
e.g. <15 m.

In the general case when ¢,, ¢, ¢;... are the numbers of counts
observed at times {,, ¢,, ¢,... taken over counting periods A2y, At,,
Afy ... the general formulas ((11.68), (11.69), (11.70)) must be used,
with Iy = ¢/ (thus 4 = 1, as appears from equation (11.71)):

== (Z c Zc:f; In Ry — z cids Zc; In R)/D {11.82)
a=lhR,= (Z c;t? Z ¢ln B — Z citi Zcm In )ID  (11.83)
D =T Lot - (5 e (1184

With Wy =¢ and 4 =1, the general formulas for the variances
become:

a¥h) = o¥)\) = EC‘ID = Z Cg/[z ci Zc;t? - (Z eli)?]
=t = )}y al? (11.85)
ofa) = o(ln Ry) = Y eu}/D (11.86)

A representative example for the general case is described by Cook
and Duncan {39). The method deseribed above is obviously much
more tedious than the graphical determination of A and R, (sec
Chapter 5), although it is more difficult to assess the statistical errors
in the latter case. In Chapters 5 and 9, reference is made to computer
programs for half.life determinations.

A theoretical analysis of the evaluation of short half-lives {e.g. on
multiscaler) by means of the graphical method (measurement of count-
ing rate in a sufficiently great numbsr of short time intervals and plott-
ing on a semilog scale) has been described by Sterlinski (40). The best

A DLALIDLAAL LIVLI B X IvE A 2 LA VB LD UGS ,a\ 5}

. . .o ;
accuracy and the smallest systematio crror is obtained if the meas.. ..
ments are programmed as follows:

(a) Choice of total measurement time:

If the total measurement time is too ahort, all possible information
is not utilized. On the other hand, if it is too long, the counting rate
becomes negligible compared to the background rate. Obviously there
exists an optimum measuring time (expressed in terms of 7';,) which
depends mainly on the ratio background to signal Rg/Rs at the be-
ginning of the measurement as appears from Figure 11.14 (40).

5
|

n

S
S
L]
3 .
N [,
2 .
(s} as 5 2 25

RBI Rs

Fig. 11.14. The optimum measurement time (axpressed in terms of T'y,)
as & function of the counting rate ratio of the background to that of the efect
R IR, at the beginning of the measurement (40).

(b) Choice of number of inlervals: :

At a given total measurement time, o(Ty,)/Tyss depends on the
number of intervals n. If n is too small, optimum accuracy will not
be obtained. If n is too large, the number of counts recorded per
interval will be too low and often the count difference (¢5 = ¢g — ¢g)
will become negative at relatively low values of ¢, see Figure 11.15 {40).

According to Sterlidski (40) the number of intervals should be 10 to
15. T'o avoid loss of information about the value of 7y, ~ particularly
in the case of low activities - there should be no break between the
successive short time intervals. The background is measured during a
sufficiently long time,
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2, Background not Negligible, but Constant

So far the assumption has been made that the background at each
point is negligible. If it ia not, the analysis is the aame, but weights are
changed. If the background rate is constant, the background meagure.
' ments taken at various times can be pooled to determine ita average
10" © : value. In this way the error in background is negligible, since it can
: be counted for a sufficiently long total time.

: The net counting rate is given by R; = ¢ifAl — Rp whereas
: o R;) = c;/At? (see equation (11.16)), as the ergor of Ry is negligible.

Hence:
N N S

v , VT TRT T (o - ReM)YAE (o — RpAh)
il {¢f. equation (11.74)}. Thus, setting 4 = 1, equation {11.71) becomes: -
. ! Wi = (o — Redb)ey (1L.87)
g instead of I¥; = ¢;, and equations (11.82) to {11.86) should be modified
B accordingly.
[
g 107 : :
B 3. Changing Background . .
(=} .

Jaffey (1) discusses the case in which the background changes and

' needs evaluation at each counting interval. This may occur when a

. NaI{Tl) detector is activated in the neighborhood of a reactor or

f accelerator. If sample plus background are counted for a period Af

14 @ ces remn e mam e — ‘ giving ¢; counts, and the background alone for a period Afp; giving ep;
counts, then the net counting rate is:

By = i/ — cpfAlp;

and
o Ry) = if(B)? + cpif(Adpi)?

since in this case the error in background is not negligible, Hence:

BL L R il U S 11
0 180 328 480 640 800 960 120 IZ'E;O) 140 | Q4o (At; )=
s . 3 s t + Cui| ——

i Fig.11.15. Influence of the number of time intervals for & given total measure- q‘l(y‘) = il (Ij‘) = c;[(At;) + GBlI(NBt) = - NB‘

ment time, on the univocality of the graphical eatimate of T'y;,, using 1V, All B (cs/ Ay — epifBip)? A\ p

the plots were made using the same experimentsl data. Case A: n = 220; case B: | o cs Et_;;

n = 11; case C: n = 5. The arrow indicates that the count difference for that
| interval is negative. Setting A; = AtyfMp; and A = 1, the statistical weight for a measure-
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ment can be calculated from the above equation and equation (11.71})

(ci = cade)®
o + emby

Thus equations (11.82) to (11.86) can also be used when the background
is not negligible, on condition that ¢; is replaced by (¢; — RpAl)¥fe;
(constant background, accurately known) or by (e — cmidi)*/{ei +
¢pi4¢) respectively (changing background).

W= (11.88)

(C) Tre Apprrion METHOD OF ANALYSIS

The procedure of the addition method in activation analysis is
described in Chapter 7, section II, E.

If increasing quantities wy of the element to bo determined, &re
added to the sample, increasing activities will be induced during
activation resulting in increasing measured count rates Ry, The function
is linear and haa the form Y = a + bz.

Assuming that the experimental error in w is much smaller than
that in R, equations (11.68) to (11.70) can be used to calculate the
most probable values of @ and b, The statistical weights are defined by
Wi = Afe? (equation (11.71})). According to equation {11. 7)

of = of (sample) + of (anal)
= o} (sample) + of (irrad) + of (chem) + of (count)

In many cases, the analytical work is much better than the sampling,
thus o} ~ o} (sample), i.e. the overall reproducibility oy is determined
by variations in the sample composition. But even when the repro-
ducibility of the samples is a good deal better thanthatof the analytical
work, i.e.

af x of (irrad) + of (chem) + of (count)

one observes that the overall precision oy is not determined by o
(count) alone (as was the case for the decuy curve, section V, B), but
depends on other parameters too, such as variations in irradiation
conditions, variations in chemical work, variations in counting geometry
ete. These parameters being subject to approximately the same
variations for all of the samples, it is allowed to give the same statistical
weight to all measurements (all Wy = 1).This is certainly true,if all the
samples are counted s0 as to obtain approximately the same total

)‘\3 Ahe DhMALAdhavidiid dat ddosvs avashon hdWVAY VL Abauid U dud D UF 1‘?
number of counts. This principle can thus be maintained even if the
measured counting rates are low as compared to the background
rate. Moreover, the added weights wy are so chosen that they do not
exceed ca. 2-3 times the weight w, originally present. Hence equations
(11.68) to (11.70) will be simplified:

b= (nY whR~ Y w) R)/D = specific rate (per

unit of weight) (11.89)
a=(YufY R — Y w Y wR)/D' = intercept with ordinate
(rate of the element in
‘the sample without
addition) (11.90)
D= nsz - (Z w;)‘ (11.91)

where # is the number of experimental points.
The best estimate of the welght. of the element in the original
sample is given by

w, = a/b (in units of weight) (11.62)

The standard deviations of 4 aud b can be calculated by means of
equations {11.72) and (11.73) setting Wy = 1.
According to equation (11.71) one can write:

oX(b) = o'n/D’ (11.93)
o(a) = o*wl/D’ (11.84)

The quantity ¢* is not known a priors, as was the case for the decay
curve, but a good estimate is possible from the residuals Z; between
the experimental Ry-values, (R),, and the R;-values, which are
calculated from the best estimates of a and b, (R)yy,:

Zg = |(Ry)yzp = (Ridoata (11.85)
It can be shown that

ot =3 Z{jn - 2) (11.98)

where o i3 a reliable estimate of the variance of an observation with &
statistical weight ¥ = 1 and where n is the number of experiments,
The term (rn — 2) instead of the more familiar (n — 1) (see equation
{11.3)) arises from the fact that at least two points are required to
characterize a straight line.
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Equation (+1.96) is tedious to handle and is therefore replaced by an
equivalent one:

Y2 =(n—20'=Y R - (). Re)*fn — 02D'fn (11.97)
This equation allows the calculation of e?, Lence that of o*a) and
o*(b) without calculating the individual differences Z;. When using
equation (11.97), a sufficient number of decimals must be calculated,
since in many cases (see Table 11.7) 3" R} ~ (¥ R}*/n + 02D'/n.
Even if very small errors of computation are made, they can strongly
influence the resulting value of o.

Starting from equations (11.92), (11.93) and (11.94) it is possible to
estimate the standard deviation o(w,) on the original content wy of
the element in the sample, using item 2 in Table 11.3.

otwy) _o¥a) . a¥(d)
u? ~ gt + bt
It can be shown that the variance o2(h) docreases if a large concentra-
tion interval is investigated, i.e. |10; — %] > 0, where @ represents the
arithmetic mean of the w-values. On the other hand, the more wi & B,
the larger the error of Ry For that reason extrapolation to w = 0
(R = a) should be carried out only if a small concentration range is
used.

It can be shown that the error of ¢ and w, is a minimum if the
weights w; added do not exweed ca. 2-3 times the weight 1w, originally
present (41). It should be remembered that equation {11.98) only
applies if each of the terms o(a)/a, o(b)/b and o(ivy)/w, is small {<0.20)
and if @ and b are statistically independent of one another. The former
condition is normally fuifilled, the latter however is not, as cov (g, b)
# 0 (44). For that reason equation (11.98) is only an approximation,
and a term 2p[o(2)/a)a(b)/b] should be added, where p is the correlation
coefficient.

If, together with the addition series, s “foreign” samples (i.e,
different from the sample, containing w, of the cicment) are irradiated,
giving an average induced activity R’, the content 1w’ of the element in
these samples can be read from the calibration curve or caleulated from

W = (R = a)fb + w, (11.99)

A good estimate of the expected standard deviation o{w') is found by
classical statistical methods {42):

o{w') = o{w)t

(11.98)

(11.100)

11, STATISTICAL INTERPRETATION OF RESULTS LR ;?

where the quantity ¢ {from (-test) has (n — 2) degrees of freedom
(D.F.). The value of ¢ can be found in statistical tables. At the prob.
ability level P==0.68, or P’=0.32, {~1 assuming D.F. =10.
o{w) can be caleulated from:
oX(w) = a¥{(n + r)jnr + (B — Ryn[5rD)o?
where # = number of determinations of w'

B = (L R)/n

The error on R’ is & minimum if R’ = B and increases for B’ 2 &.
As an illustration, & practical example will be described.

- (11.101)

Ezample: Determinalion of lraces of osmium in ruthenium. (Spectro-
graphically pure and commercial quality) ‘

Procedure, irradiation conditions, chemical separations, counting
equipment: see ref. (43). ~

Twelve 10 mg samples of spectrographically pure ruthenium (added
amounts of osmium: 0; 0.10; 0.25; 0.50; 0.80 and 1.00 ug, see Table
11.7) were irradiated together with three 10 mg samples of commercial

TABLE 11.7 . .
Calculations for the determination of osmium in spectrographically pure
ruthenium, using an addition method of snalyaia

Sample R = net!"10s w=ug Os
number activity (of6m) added Rw wh Rs
1 4,530 0 0 o 20,520,800
2 4,872 o 0 1] 23,736,384
3 —_ 0.1 —_ —_ —{a}
4 8,411 0.1 841 0.01 41,100,921
B 8,607 . 025 2,167 0.0825 76,116,859
8 9,710 0.25 2,428 00825 §4,284,100
7 12,384 0.50 8192 025 153,363,456
8 13,391 0.50 8,805 025 179,318,881
g 13,507 0.50 6,754  0.25 182,430,049
10 17,8630 0,80 14,104  0.64 310,816,900
11 17,350 0.80 13844 064 299,463,025
12 18,767 1.00 18,767 1.00 351,825,049
comm, Ru 2,438 —_ — _— —_—
" 2,520 - - _— —_
" 2,707 -_ _— -

{a) 8ample 3 discarded, separated osxmium partly lost,
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ruthenium. The 9105 activity was counted after chemical separation,
using a Nal(Ti} detector. The caleulations are summarized in Table
11.7.

SUMMATIONS
n=11 Y Rw = 171,581 2, B? = 1,731,985,554
YR =127164 Yw =470 2wt = 3.165

COEFFICIENTS ¢ and b
D' =nYwt— (5wt = 121725
b=(@m) Rw-3Y wy RYD' = 14,909 ¢/5m/ug Os
a=(Fuwy R~ wY Rw)D =519 cf5m

i

CALCULATED OSMIUM CONTENT

we = afb = 0.348 pg Os (in 10 mg Ru), i.e. 34.8 ppm.

STANDARD DEVIATIOXNS

(Equation 11.97) = 1,731,985,554 — 1,470,062,081 — 257,135,557
= 4,787,916. Hence o? = ) Z*/(n — 2) = 531,901

o(b) = o*n/D’ = 459,874 thus a(b} = 678 or 4.54%
o¥a) = ot} w?/ D’ = 132,318 thus o(a} = 364 or 7.01%,
0%(1,) = o%(a/b) = 0.000841 thus o(w,) = 0.020 ug or 8.4,

Taking the covariance term into account, one finds (i)~ 119%,.

COMMERCIAL RUTHENIUM

(Equation 11.101) R’ = 2,435; 2,520; 2,707, average value 2554
¢/5 m.

Hence w' = 16.8 ppm.

Estimated standard deviation r = 3, n = 11, 9 degrees of freedom,
{1 o(w') = 0.018 ug or 1.8 ppm.

(Note: the commercial sample contained less osmium than the
gpectrographically pure sample.)

15.

18.
17
18.

19.
20,
21.
22.
23.
24,
25.

237.

28.

29.
30.

3l

32,
33
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TABLE 12.2 (continued)

Elomont

determinsd Matrix References

Rare earths Rare earthe B 102-3 100~-K 142-R 42-W 8¢
Moetals+alloys A 153

Minerals 4 A 156-C 68-C 106-D 79-F 90-H 42-H 43-H 44~
meteorites L 124-L 143-8 40-8 52-8 63

Organio B 186-K 12-8 20-S 94-8 98-S 08

Alr G 62

Molten salta B 178

Solutions T 24

Matrix not B 133-B 188-C 104-L 106-N 27-R 106-Y 21
defined

B 3

Fir ?

APPENDIX 1
THERMAL NEUTRON CROSS SECTIONS

The experimental data for the tables of this appendix are based on
the compilation “Neutron Cross Sections” by D. J. Hughes and R. B.
Schwartz (BNL-325, 2nd ed. 1958) and by D. J. Hughes, B. A.
Magurno and M. X. Brussel (BNL-325, Supplement 1, 1960; U.S.
Government Printing Office, Washington D.C.); and on the “Chart of
the Nuclides” by N. E. Holden and F. W. Walker {(General Eleoctric,
Schenectady, N. Y., (1968). '

In Table 1, the total cross section {os), the capture or absorption
cross section (og, o,,) and the average scattering cross section {7,)’
for thermal neutrons are given for the elements, It should be noted that
the absorption cross section listed is the 2.2 x 105 cm s~ (0.025 oV)
value, o,,(t,), slthough the value consistently used in more acourate
caloulations is (\/n)/2 or 1/L.128 times this value, if the neutron
temperature is 203.6°C. For & neutron temperature 7', the value

a {203.6\1/3
Ona(F) = Type(v) \/?'(—1",—")

must be used. More details are given in Chapter 10, section II, B, 4b.
In Table 2, the isotopic neutron activation cross sections for thermal
neutrous are given (in barn). As already mentioned in Chapter 3,
section V, C, 1, the reaction rate can be caloulated from the knowledge
of the eross section o, at a particular velocity v,, nn condition that
a o 1fv. The velocity v, is taken as 2.2 x 10® cm 8~2, the most prob-
able velocity of a Maxwellian distribution at 20°C (corresponding
energy 0.025 eV). The cross sections in the table are given for this
velocity, except in some cases where they refer to a reactor neutron
spectrum (values with asterisk). The activation cross sections are for
{n, ¥) reactions, except when explicitly stated for {n, p) or (n, «). For
heavy nuclei (Z > 88) the cross section for fission is also included.
For practical use in activation analysis (induced activity caloulations,
see equation (10.1)), the per cent abundance of the target isotope in the
natural element and the half-life of the activity produced are also given.

 (Symbols: & = year, d = day; h = hour, min = minute, 8 = second.)
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