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i - L W.",!L W. (11.2)

where W. - AM (equation 11.71). In section V of this chapter some
examples are described showing how the statistical weighta W. are
determined in praotice.

~, I~

If all observations are not equally reliable (e.g. several "populati. '
with the same form a.nd mean), a statistical weight W. can be intro­
duced (data pooling). The most probsble value is then the "weighted
mean", sometimes called the "general or probable mean":

where n - 1 indicaWi the degrees of freedom of the observation set.
The applicability of (11.3) requires that an observations Zj are made
under the Bame conditions and are all equally reliable. The standard
deviation on a single ohaervation is given by the square root of the
variance, on coudition that .. is sufficiently large:

a(") - ,jv - Jit ~ -=- ;C>I} (11.3 bis)

If a number of .. analyses is made, a better estimate of tho result
is possible. The standsrd deviatiQII which alfects the wholo series of

(B) PRECISION - STANDARD DEVIATION

In some observation sets, the total spread can be so narrow that
only a few measurements are needed to obtain a close approximation
of the arithmetic mean, whiclwbould be found with a large population.
In other Cll8es, the m.ell8urements "fe widely scattered, necessitating
a large amount of data. In the first C&Il8 tha results are said to be
reproducible or precise, in the second C&Il8 they are not. The degree
of confidence can be expressed in terms of "probable error", "sts.nds.rd
deviation", "nine-tenths error", etc. (Table 11.1).

The reproducibility of an analytical method inagiven con~tration
range is usually expressed by the standard deviation 0'(") on a single
deterInination. This can be ohtained from the statistic8J concept of
variance, which for a single mCll8urement is given by:

(11.3)

•
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I. Application of Statistical Methods to Analytical Results

(A) BEST VALUE FOR A SET OF OBSERVATIONS

It generally makes no sense to define an error as the deviation of a
measurement from the true value, as the latter i. usually unknown.
Thus, a definition of "error" can only be given after evaluation of the
most probable value of the quantity measured. Experimental data are
always 118BOciated with the inevitable errors of observation, i.e. they
all can differ amon~ themselves within BOme limit•.

For a. number n of observations Xl' x II ••• .:rAJ made u~der the same
conditions and all equally reliable, the "arithmetic mcan" is the best
representativ~ ~·alue: •

i = L",/n (11.1)

fi02

When dealing with errors, distinction should be made between:
(a) systematic errors, which determine the accuracy of a result; (b)
random errors, which determine the reproducibility or precision.

By systematic errors the experimental results deviate from the
true value, because of' a bias. Statistics, on the other hand,
only deal with random e;rors, which are a measure for tho reliability
of a procedure.

Systematic errors are d..cribed in Chapter 10. The present chapter
illustrates how statistical methods may be applied to data obtained by
activation analysis. Although the statistical method is a most important
part in the evaluation assessment, no attempt is made to present a
rig?rous or complete treatment. Some typical examples will be given,
which are frequently encountered when dealing with radioactivity
measurements and with analytical results from activation analysis.
Obviously, the statistical approach cannot obviate the need for common
sense and BOund analytical techniques, but unneces.;ary loss pf operstor
time in the laboratory can often be eliminated and the reliability of the
deductions increased by the use of statistical methods and of carefully
designed experiments.

STATISTICAL INTERPRETATION OF RESULTS

CHAPTER 11



where i is given by equation (ILl) and a(x) by equation, (11.3).
The exact standard deviation a can be fOlUld from an infinite number

of observations. For a limited number of observations, the symbol.
is often used: .(x) and 8(i).

ali) is an es,imate for the standard deviat.ion of the mean value :i.
If a precision a(i) is required for the r..ult i, the necessary

number n of analyses can be computed from equation (11.4), if a(x) i.
known. Merely increasing the number of experiments, without varying
the experimentel conditions, decreases the influence of random errors,
i.e. the precision improves. It is, however, useles.. to incre... the
number of observations beyond some limit, because of constant,
systematic or individual errors (see I, G).

On the other hand, the greater the number and variety of the
experiments (e.g. results obtained by different methods and/or different
laboratories), the more the probability of occurrence of systematic
errors will decrease, as they become of random nature.

The error on a single measurement can also be expressed 88 percent­
age standard deviation a%, which is defined by the following relation-
ship: .

r'\i) "-_ ...•., _...._...... -.._- ...

results, a(i), .' be calculated as follows:

.-J{f (i - xI)'l
a(x) - n(n _ 1) J

a% = l00a(x)/i

a(x)

= .In (11.4)

(11.5)

.,~ " J. .... ., ......... ......, ....."".............• ... J,;u,........·""......... .l.v.... V.ol .u...:.0) ....~ ..~ ~. ~J

., r
arithmetic mean of an infinite number of observations with ca. 6010
probability•

Obviously, the degree of confidence increases, 88 the "confidence
interval" increases (Table 11.1).

For trace analysis, the 0.68 probability level is generally accepted.
In other cases, e.g. minor constituent anaJysilI, a more severe confidence
limit may be required, for instance ±2u (P ~ 95%). The interval
±3a practically represents the maximum random error a.ssociated with
a measurement (P - 99.7%).

TABLE Il.l Probability lavolo
P - probability that the error or &11 anaJyail < vcr

pI = probabillty that the error oC an analyail > Uri (P' &a 1 - P)

Constant u Probability P P' Error

0.6745 0.500 0.600 "Probable error"
1.000 0.683 • 0.317 "Standard deviation" (a)

(rme orror)
1.177 0.761 0.239
1.645 0.900 0.100 "nine.tenth. error" or

ureliable error"
1.960 0.950 0.050 Ilninety-1ive hundredths error"
2.576 0.990 9.010 "ninety-nine hundredtha error"
2.807 0.995 0.005
3.000 0.9973 0.0027 3.
3.291 0.999 0.001
4.000 0.99994 0.00006 4.

(0) CoNFIDENCE Lmrrs

As the arithmetic mean for an infinite nnmber of observations is
usually not accessible, it is ouly possible to calculate the probability
that this value is contained within the limits :i ± t-x. The number t.x
can be chosen arbitrarily small. It is common practice to express t.x
in terms of the standard deviation, e.g. ± t.x= ± la, where I depends
on the probability level and on the number of degrees of freedom. If
the latter is large, I~u (see Table ILl). For a normal distribution a
result XI will be obtained within the interval," ± ali) with a probability
P=0.683 or 68.3%. This means that, in the average, two ~ut of three
results may be expected to deviate from tho mean by less the.n one
standard deviation. Hence, the interval XI ± a(xil will contain the

(D) OUTLIER REJECTION (CHAUVENET'S OJuTEBION)

There can be no qu""tion about the rejection of faulty observations,
provided there is evidence for a mistake. Examples: (i) one notices
that an irradiated sampIe W88 not etched before chemical separation
of the element to be determined, so that contanlination occurred;
(ii) faulty determination of the chemical yield, e.g. incomplete develop­
ment of a colour for spectrophotometric determination, due to wrong
pH; (iii) during counting experiments outli.era can occur by disturb­
ances extemal to the nuelear process, such &8 amplifier noise, electrical
line noise, shift of amplifier gain due to variation in temperature, eto.
Other typical errou are: misreading the instrument, counting the



Limiting value of error (in units
of a) 1.15 1.55 1.73 U8 1.08 2.25 2.40 2.50

TABLE 11.2
Chauvenetts criterion for outlier rejection

"Limiting value of error for nine experiments: ±1.93 a(x) - ±58
ppm (Table 11.2). TWa value is exceeded by the first determination
of laboratory 3 (992 - 929 = 63), hence tWa measurement may be
rejected. Then, the new average value becomes: 922 ppm; a(",) - ±19
ppm; the limiting factor of error for the eight remaining experiments:
±1.88 a(",) - ±36 ppm. All the remaining results fall within 922 ± 36
ppm.

Conservation of moderate outliera is strongly sugg..ted for the
follmving reaBOns (1):

(a) Apparent patterns in sequences of random data are often start­
ling. In the long run, averaging bunched results giv.. averag.. that
deviate more from the "true valu.... than does the mean of all ValuolB.

(b) As the number of experiments increases, the number of outliera
increases. Indeed, the rare occurrence of abnormal r..ults is in accord. .
ance with the theory of errors.

(c) In a large group of messurements, omission of the outlier has
little effect oil the average.

The use of the above criterion is, therefore, permitted only if the
number ofobservations is small. It is true that BOme good observations
may be lost (it discards good observationriin -40% oftha·situations
to which it is applied), but tl...t is the price paid to get rid of serious
deviations. It is perhaps needless to point out that a suspected observa­
tion may ultimately prove to be a real exception requiring further
r..earch.

8 10 20 30 40G2
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wrong sample, counting the sample in the wrong counting position,
failing to remove or insert an absorber, failure to remove a previous
sample, failing to set proper discriminator levels, failing to record the
data in legible form resulting in misreading of the written data, etc.

Sometime'" n.n exhaustive searoh will fail to reveal any reason why
some results diverge in an unusua.l and unexpected mallner from the
others. Several criteria have been suggested to guide the investigator
in deciding whether doubtful observations shall be included in the mean.
ehauvenet's criterion is perhaps the most convenient to use. It starts
from the assumption that reliable observations will not deviate from
the arithmetical mean beyond some limits (see end of foregoing
paragraph).

In Table 11.2 the limiting value of the deviation from the mean of a
single observation (in units of a) is given as a function ofthe number of
experiments performed. When this limiting value is exceeded, the
measurem,ent concerned may be rejected.

Number oC experiments

Examplt: Determination of oxygen in steel by four different labora.
tories. Results (ppm). (E) PROPAGATION 011 ERRORS

(Xl - x) (XI - x)'
lab, 1 911 -18 324 JF' (XI - X)l}

'908 -21 441 a(x) = = 30
'It - 1

lab. 2 947 +18 324
938 + 9 81

lab. 3 992 +63 + 3969
944 +15 2"" .• 0

919 -10 100
lab. 4 903 -26 676

899 -30 900
average 929

Sometim.. several results or measurements "'" "'0' •.• affected with
their corr..ponding errors, e.g. standard deviations a(",,), a("'.>, •••
must be combined to give BOme new quantity X = /("'" "'0' •..).

In Table 11.3, the error propagation in BOme common functions is
aummarized assuming normality. After computation of the standard
deviation of X, the confidence limit of tWa quantity can be determined
as ± la(X)•

The expressions in Table 11.3 are valid if each a(:&j)/:&j is su1liciently
small (:s 20%) and if all :&j's are statistically independent.

Several practical applications can be found in tha course of tWa
chapter.



(F) SYSTEMATIO AND RANDOM ERRORS - ACCUR.WY AND'REPRODUCI.

BILITY OR PRECISION

The random errors hitherto discussed have this distinctive feature,
that they are just as likely positive or negative. Some errors however
do not have this character.

For a number of activation analyses using thc comparator method,
quite reproducible or precise determinations can be obtained, if, e.g.
the standards are always prepared from the same stock solution. In
the case of faulty preparation of this solution, the determinations will
obviously be inaccurate. Inaccurate results will also be obtained if
neutron shielding occurs in the sample or in the comparator or if
interfering nuclear reactions occur. Such faulty analyses are said to
be affected by constant or systematic errors. A lIumber of important
systematic errors are disCllssed in Chapter 10.

A major difficulty for an investigator is to detect and possibly
eliminate constant errors. This is ususlly dOlle by modifying the
conditions under which the experiments are performcd.

(7) X _ In(~. + ~.)

.............................- .......--.~_ ....._..-,..-, -- ....._----

EZlJmplu: (a) Is the result of an iridium determination in • l:t
rhodium sample ("abo ~ 150 barn for thermal neutrons) affected by
neutron shislding in the sample (2)1 Using the claBsical method (10 mg
samples irradiated together with standards) one finds 17.0 ± 0.3 ppm
Ir. If neutron shielding ooours in the rhodium sampl... and not in the
iridium etandards (11'g of Ir spotted on filter paper), the result will be
too low, as the specifio activity of iridium in rhodium is lower than thet
in the atandards. Indeed, • higher content (18.1 ± O.li ppm Ir) is
found when using an addition method (see section V, 0); the iridium
standard solution is added to rhodium and the sample then dissolved
in • oloeed quartz tube, prior to irradiation. One can conolude thet
neutrou welding oocurs and an addition method is recommended.

(b). In the caae of an iridium determination in osmium ("abo ~ 15
barn for thermal neutrons) the following results were found (3): classical
method (10 mg oamples; standards Il'g Ir on filter paper) 21 ± 2 ppm'
Ir; addition method (c/. example (all 19.5 ± 1.2 ppm Ir. As the mean
value of each set of results differs by an amount to be expeoted from
the standard deviatio;'" of the different sets measured under the same
conditions, no error due to neutron welding is deteotable.

(c) Traces of iridium can direotly be determined in palladium, after
decay of the palladium activity and separation of 111Ag (daughter of
111pd), using 72d n'Ir. Counting of "'Ir can be performed using the
photopeaks at 317, 468 or 610 keY. For a given sample the following
results were found: 0.20 ± 0.02 ppm (317 keV), 0.20 ± 0.02 ppm
(468 keV), 0.26 ± 0.02 ppm (610 keY). By changing the counting
oonditions, some interfering impurity appears, which emits gamma.rays
in the 610 keV region. Measuring the 610 keV photopeak could thus
give rise to syotematin errors.

(d) If some interfering threshold reaction can introduce a systematio
error, e.g. IIFe(n, p)IIMn when determining manganeae in iron via
the nuclear reaction IIMn(n, y)IIMn, one should choose irradiation
positions in the reactor with different ~valuea (aee Chapter 3, section
VI, B, 3). If no interference occurs, the ratio IIMn/uFe should be
constant. Hoste el aI. (4) found, however', ratios varying from 13 in the
reactor core, to practically zero in the relIector. Conaequently, man­
ganese determinations in iron must be performed in a well thermalized
neutron speotrum.

Other examples of avoiding syatematio errors are discussed in
detail in Chapter 10.

s
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Standard deviation

~~ NEUTRON AQTIVATION ANALYSiS

'f!
• i' TABLE 1L3
Error propagation in soma common funotions

Function

508

(6) X _ In oz,

(5) X g.".
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(8) X _In_ •
~.

(1) X _ II: I ± II: I (addition, 8ubtraction)

(2) X _ :1:.%. (multiplication, division)
~.

(3) X - oz. + b

(')X _ ...
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Fig. ll.l. Diatributioo of copper aloog biamuth rod (8).
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should be as small as possible (max. 0.0=), to rwu... random de.....
tions. Transversal displacement can also introduce considerable varia­
tions, but can reasonably be reduced by using a suitable bumper. In
practice a reproducibility of ±2% can be obtained (9).

For very short irradiation times, when samples and standards are
not irradiated simultaneously, 00/, (irrad) also depends on the repro­
ducibility of the duration of the irradiation Ib, thus on the repro­
ducibility of the timers, the pn6UUlatio syster:1. etc. Pneumatio systems
always working under overpresaure are often more reproducible than
those where transportation is alternatively performed by over- end
underpreSlure. The transport times obviously depend on the total

1. 00/, (sample)

The percentage standard deviation of the sample is determined by
the weight of the sample and even more by the homogeneous distribu.
tion of the element to be determined. Sample weights are usually maxi.
mized for the sake ofsensitivity and counting statistics, taking however
in!? account the induced .oatrix activity and pOSlible sWelding effects.

For sample weights over 1 mg the precision is better than 0.5%.
From 0.1-1 mg the estimated error is ca. 1% (7). Weighing ofa 100 mg
aluminium sample can be done with high precision, but heterogeneity
at this scale is not unlikely to occur, I.e. when repeating the analyses,
the scatter of the results around a mean value can be much more
important than expected.

If a non-destructive technique is applied, 00/, (chem) is zero. Assum­
ing a sufficiently high activity and" reproducible counting geometry,
00/, (count) is small. Irradiation in rep.oducible conditiona (small
tlux gradients and tlux perturbations) makes 00/, (irrad) small too. If
in these conditions large scatter is observed, this is most probably due
to inhomogeneity of the samplcs, as oo/,(T) is practically determined
by 00/, (sample). During a nondestructive dctermination of copper in.
bismuth by y-y-coincidence spectrometry, an unusually large scatter
was observed for a given bismuth rod: from 0.04 to.0.4 ppm (8). Re.
arranging, however, the results according to their respective loeation
along the axis of the rod indicated the existence of a concentration
gradient of copper. (Figure 11.1.)

The percentage standsrd deviatiou of the irradiation is maiuly
produced by variations of the neutron tlux and for short lived isotopes
by inaccurate timing. The problcm of tlux grs<lients in different types
of reactors is discussed in Chapter 10, section II, B, 2. In the CS36 of
a neutron generator, tlux gradients are ext,remely important. Small
variations in the positioning of a sample cause large variations in
received tlux. A displacement of 1 mm towards or away from the
target gives rise to a tlux variation of + 12.5% or -11 % for a sample of
9 mm thickness at a distance of 9 mm from the target (Figure 10.2).

At a distance of 18 mm, the change in tlux is +7.4% and -8.5%
respectively. For that reason the tolerance on the pneumatic tube

2. 00/, (irrad)
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4. "% (count)

The percentage standard devia.tion of the counting is composed of
the following factors:

(a) a. geometrica.l fa.ctor:
(b) electronio drift;
(c) drift in gain and change in resolution as a. function of counting

rate;
(d) dea.d time corrections: these a.re more likely to introduce

syatematio errors a.nd are discussed in Chepter 10, seotion II, E;
(e) counting stetlstics.

(a.) Variations in geometry are Ullually smaller than ±1% when
using a. flat or well.type scintillator or semiconductor detector a.nd
standard counting vials. Unexpected errors can occur by eva.pora.tion
of a liquid through plastio Q,onteiner waUs or covers, or when counting
solid samples of irregular sha.pe. When counting volumes of 25-50 ml
in a. volumetrio flasl!;, placed direotly on a flat deteotor, it Is important
to select flaska of the same form a.nd flU them to the same height.

(b) Electronio drift and drift due to the temperature coeflloient of
the detector \\ill usually not exceed ±0.3% if the temperature in
the counting room is kept constant within £ 0.5·C a.nd t.he relative
humidity within ±10%. If the temperature changes, the gain shift of
the photomultiplier, the preamplifier, the amplifier and the pu1ae height
analyzer can amount up to 1-2% per ·C. Around room temperature
sodium iodide and anthracene orysta.ls exhibit a negative temperature
coefficient of respeotively 0.1% per ·C and 0.5% pel' ·C of the pu1ae
height. Whcn using a Compton-compensated spectrometer, this
difference can result in a mismatoh of the energy soaie compensation,
noticeable if the temperature in the neighbourhood of tho detectors
changes by ca. 5·C.

The gain shift oheracteristics of&Ome multiplier phototubes (Dumont,
RCA, EMI, CBS) heve been examined by Covell a.nd Euler (10). The
stability of the photomultiplier gain also largely depends on the
quality of the high voltago power Rupply. H.T. power supplies, stebil.
ized with a Weston reference element, are recommended. Similar pre­
cautions must be taken with semiconductor detectors, although H.T.
stebilization is leas critical.

A drift control system, which corrects both for the overall drift
due to gain changes and for the zero point drift, which is appa.rent

'!;'V)
length and huler diameter of the tubes and on the presaure, and, for a.
given system, on the sample weight (or weight of sample plus rabbit).
For I. = 10 s, the reproducibility is typically of the ordor of the percent.

3. "% (chem)

Obviously "% (chem) must only be considered when chemical
separations are involved. Then it may further be resolved and contains:
the diasclution of the sample and the different steps of the separation.
Although the reproducibility depends on the method used, in the case
of a. standard procedure "% (chem) can be estimated to be ±2% 01'

better.
When an element such as tin or zinc is too thoroughly etched after

irradiation, so that its weight is reduced to 60-70% for instance,
some of the dissolved trace elements, which nrc more electropositive
than the ",ntrix (Cu, Ag, Au, ... j may again he deposited on the
sample. Their concentration in tho ma trix will thcn ho calculatcd with
a. wrong sample weight, thus giving positive errors.

During the dissolution, losscs of the element of interest are po.sible
by volatilization, by incomplete cleaning of the crucible after a. fusion,
etc. In genera.!, some of the practically cAlTier·free material can be
lost during the chemical treatment, e.g. by adsorption" if no carriers
or hold.back carriers are added. But even then the problem of isotopic
exchange remains and can cause random or even systematic errors.
A typical example: osmium carrier, prepared hy a. &Odium peroxide
fusion of the meta.! sponge, was added to osmium tracer, prepared by
diasclving the irradiated metal sponge in aqua. regia.

After boiling in sulfuric acid and hydrogen pcroxide, the carricr
appeared to distill practically quantitatively, whoreas the yield for
the tracer was 85% only, evcu after repeated addition of carricr and
repeated distillations. For that reason the chemical separation method
must csrefully be checked by suitable tracer experiments, particularll'
when dealing with elements forming a. vsriety of complexes and (or)
existing in a number of valency states. The radiochemical purity of
the isolated fraction must obviously be checked hy half.life measure·
ment or gamma-ray spectrometry.

Other variables, such as msnipulation errors, calibration errors in
volumetric glasaware, balances, weights, etc. can be neglected when
adequa.te precautions are applied.



Fig. 11.3. BO eircoil with _loring diode (13).
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Double-delay.line diffetentiation is less dependent on the counting
rate and pile.up overloading can be minimized.

The preamplifier must be capable of driving the low impedance of
the interconnecting ch'Cuit between preamplifier and amplifier over
the full range of input signaJa without pile-up distortion due to sta­
tistical bursts. It must be noted that the largest signal from a radiation
detector may frequently be more.than a hUndred timell the amalIest
signal of interest. If the amplitude distribution of the latter is to be
studied, distortion of the resolution can obtain, due to overload of the
linear amplifier. Indeed, the larger signaJa give rise to extensive
amplifier paralysis followed by a slow recovery. Smallerpulaes oceurring
during the recovery interval will not be measured correctly and those
occurring during the paralysis interval will be lost. .

The change in resolution as a function of counting rate can easily
be observed with semiconductor detectors. Even for relatively weak
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in some mult.Iannel analyzers, has been described by Fit.e d al. (ll).
In the decomposition of complex gamma spectra by weighted least
squares analysis, the infIucnce of electronic instabilities can be calcu.
lated with the X· test (12).

(e) Drift in gain and change in rcsolution as a function of counting
rate depend mainly on the quality of the photomultiplier tube (10)
and the pulse shaping circuits. These factors also depend on the decay
constant of the light pulses in the scintillator. Some typical data:
NaI(TI) 0.25 p.s, CsI(TI) 1.1 p.s, KI(TJ) 1.0 p.s, anthracene 0.032 p.s,
trans·stilbene 0.006 p.s, plastic and liquid phosphors 0.002-<l.008 p.s.

The use .of a sclected photomultiplicr tube is highly important to
minimize changes in gain, whcreas the bleeder chain and load resistor
determine the pulse duration, thus affecting the resolution. The require.
ments of pulse hcight analyzers with respect to pulse duration vary
from instrument to instl1lment, but pulse durations of one to several
microseconds are most common. The linear amplifier transforms the
detector signals into signals suitable for pulse height analysis (pulse
ahaping and amplification).

In the case of single.BO differentiation and single-delay.line differen.
tiation the base line depends on the counting rate. At high counting
rates the small but long undershoot departs appreciably from the
normal level.

If the signal is measured with respect to an average reference base
line, it is recorded as bcing smaller than at low counting rates. On tho
other hand, the p:obability for pile.up increases, since the signals CIUl

occur in statistical bursts: such signals will be recorded as being larger
than at low counting rates. These effects result in a deterioration of the
resolution; Figure 11.2 shows the effects for eingle.BO.clipping.

Base·line displacements are less important for double-BO.clipping
(bipolar signals) but longer BO time constants are often neceasary to
keep the system linear. A longer time constant results however in a
greater probability for pile.up. Hence, the upper limit of the counting
rate at which spectral distortion is not excessive, may be similar for the
three pulse shaping systems mentioned. The pulse lengthening can be
avoided uthe resiotor in the second clip is paraUeUed by a D.C. restoring
diode, which removes the undershoot (13) (Figure 11.3). The second
clip is u£uaUy at the amplifier output and direct coupling between the
second clip ~r.d the pulse height analyzer is used to keep the base·line
location "independent" of the counting rate.
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such as ion.excha.nge, electrophoresis, electrodepoaition" IThe
isolated fraction is then counted a.nd if neCllSlllllY, the chemical yield
is determined. For each result, ~ (lI8.Dlple) and ~ (irrad) _, of
course, identioal. Hence, for the analysis of these sample a1iquots,
a~.(T) = a~ (chem) + ..." (count), where ..." (count) can be found as
desoribed under (3). This allows the estimstion of~ (ahem).~ (cham)
+ a~ (count) can also be estimated from tracer experiments in exactly
the same experimental conditions and"'" (ahem) is deduced as described
above.

(6) From (I), (2) - or (3) a.nd (4) - and (5), ~ (sample) can be
estimated using equation (11.7).

(7) For short-lived rsdioisotopes, where no chemical treatment
ooours, a~ (chem) = 0; ~(T) is found as under (1): ~ (irrad) +~
(count) follows from repeated analyses of the same sample. Since
a~ (count) can be estimaled,~ (irrad) can be calculated. From equa.
tion (11.7) follows then~ (sample).

Obviously, the largest ..." is the determining factor of the preclaion
of the results and this stage should possibly be improved, if a better
precision is required. It must be borne in mind thet a similar ~(T)
exists for the standard or comparator.

E(MeV)"

0.646

B

(bl

(c)

25

Esc.

-A-

u:w

W
"D
Gj
Z

20

OJ....
~
~

15

-~

10

10" 2.KJ& 3.KJ& 4106

TOlol Aclivily (qm)

Fig. IUS. Spectral distortion with c.Junting rate; 7.6 em x 7.6 om. NaI(Tl)
~etec.tor. Fairatein amplitler (double.delay.line differentiation). Ca> Spectrum of
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n. Counting Slatialies

(A) BINOMIAL DISTRIBUTION

The radicactive decay has a statistical character. If a radionuclide
is counted several times in identical experimental conditions, dilI'erent
counting rstes (number of counts per unit time, ll) will be observed,
even for a very long lived species. These t1uctuations follow statistical
laws. It can be shown (15) that the prohability Pta) of obtaining a
disintegrations in a time AJ from No original radioactive atoms is given
by the binomial distribution:

Nol .
Pta) - (No-d) lal [1 - exp (-Ml)}' [up (_Ml)~.-4 (11.8)

where [1 - exp (-Ml)] is the probability of a.n atom disintegrating
in a time lJ.1 a.nd exp (-MI) the probability to survive the time AJ.
The expected average numberDof atoms disintegrating in the time AJ is

D - No [1 - oxp (":MI)] (11.9)



TABLE 11.4
Correction factor J (equation 11.11)

o 1 2 3 4 S

O.SOO 0.472 0.443 0.416 0.390 0.368

(11.12)
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Another a;;~o:::·:·::in::::i::A:~v:::·:~·:w~l::
the calculation of the true counting rate at the start of the counting.
The true disintegration rate at " is given by -dN/dl - W •. The
average observed disintegration rate is N.,[1 - exp (->.tJ)]JtJ. hence

W. - FN.,[1 - exp (->.tJ)]JtJ

(B) EUICOTRD SrANDABILDXVLI.TIOlf

In the cas. of rl\dioactive dinintllgration it can be shown (15) that

a = .J{N.,[1 - exp (->.tJ)]. [1 .- • + • exp (->.tJ)]} (11.13)

where [1 - exp (- >.tJll is the probability of an atom disintegrating

tJITII2ICurvd)

005 010

or

F
0.693tJ 1

- xPlIa 1 - exp (-0.693 tJ/PlIaJ

The larger tJ/PlI .. the larger F. TbJs correctilm factor is repreaented in
Figure 11.6 (17)•.

It will be noted that if the observation time tJ is less than "bout
1.5% of PlI., the correction is less than 0.5%.

(11.11)

D = N/!!.t '" d/!!.t (11.10)

if a reaaonably large number of counts has been obtained during the
time tJ.

Note: When the decay of a radioactive sample is followed as a function
of time, the counting rate R = c/!!.t is usually taken to represent the
activity at the midpoint of the interval !!.t, i.e. at" time I, = t, + O.Mt.
This approximation is ouly valid if !!.t ~ P,/ •. If however !!.t ~ PlI••
the mean counting rate R = o/!!.t will represent the activity at a time
t, = t, + ItJ where 0 < I :s 0.5. Indeed, from equation (11.9) and
(1l.10) follows t~at the average observed disintegration rate for the
counting interval!!.t is given by N,[1 - exp (->.!!.t)l/!!.t. On the other
hand, the true disintegration rate at a given moment t, = t, + I!!.t is
-dN/dt = W, = W, exp (-AI!!.t). From this it appears tha,t:

exp (-AI!!.t) = [1 - exp (-Mlll/B.t

wwch allows us to calculate I, i.e. the moment at which the mean rate
is equal to the true OM:

-0.693 I!!'I/T,I. = In [1 - exp (-0.693 !!.t/T",)]
0.693!!.tIT",

fiHiIUT~O~ AVflVA'l'lON .A.NA.L~srs

The expected aL_..ge number of observed counts with a detector is
o - N., where. is the detection efficiency.

For small values of >.tJ, i.e. !!.t ~ T'/', equation (11.0) is reduced to

N = N,>.!!.t (11.0a)

As the disintegration rate D = -dN/dt = AN, (see equation (5.2)),
equation (11.9a) can be written as

or

I 3.322 I [ 0.693 !!.t/T./, ]= --- og
!!.I/T,/, 1 - exp (-0.693 !!.t/T ,I.)

Some calculated values for I are given in Table 11.4. More numerical
data are given by Hoffman (16).

"



(C) POISSON DISTRIBtlTION AND NORMAL OB GAUSSUN DISTBIBtlTION

The binomial distribution may be replaced by the simpler Poisson
distribution (15). The probability PIa) of finding a disintegrations is
then given by equation (ILl8), where N is tho aversge to be expected
(equation (11.9))

.!;::!~SlJ'1·J.lO:( AO'nVA'l'!ON .ui~YIU8

in the time t.1; [. . exp (- >.At)] z is the probability of a disintegration
resulting in an observed count in the time t.1; [1 - : + z exp (->.At)]
or 1 - :[1 - exp (- MI)] is the probability of an atom not resulting
in an observed count in the time t.1. Substituting equation (11.9) into
equation (11.13) one obtains:

0= .j{lIz[1 - z + z exp (->.At))} (11.14)

Usually t.1 ~ T li" thus MI ~ 1 and exp (- MI) ~ 1 - MI, heuco

o = .j(lIz) = .j(number of counts) (11.15)

Emmpk: If 10' counts are recorded, 0 = 10' or 0% = 1%. The
standard deviation for a given counting rate R (cpm or cps) is given by:

R = Nz , thus OR = .jNz = .jRt.1 = JR (11.16)
t.1 t.t t.t At

If At~ T,/., AAI ~ I, exp (-At.I) ~ I, honco equation (11.14) is
reduced to

0= .jNz(1 - z) (11.17)

Thus, if t.t is long enough to allow all atoms to decay, and if tho
detection efficiency z ::::: I, t:,e number of disintegrations is exaotly
known, and 0 = O.

If however z < I, the above equation (11.17) becomes 0 .;. .jNz =
.j(numbor of counts).

When Mt -1 and: is ncithcr ur-ity nor very small cquation (11.13)
must be used.

(lU9)

where 0 and d respeotively represent a number of counts and dis­
integrations, and R i.nd D indicate respeetivel~' a count rate and a
disintegration rate.

The above discussion applies as well to the bsckground sctivity as
to the sample sotivity to be measured. If the n\lDlber of collIlts of the
bsckground OB is sufficiently large (.jOB» 1). the Poisson distribution
of the background praotically coincides with the normal distribution.
Therefore the net count difference 08 - Co - OB also obeys the latter
(0 refers to sample plus background. B to background alone. 8 to
sample).

Nol.,
-For small values of 0B (:;4) this difference does not obey the Poisson

distribution, but obeys a more compleJ: distribution (18).
-If 11 observations are cerried out, yielding 0,. 0, ••• Cc counts. the

standard deviation for one obeervation can obvinusly a!Jo be calou.
lated by equation (11.3 bis):

o=~]'/'L~ (11.20)

1 [(N - a)']
PIa) = .j(271N) exp - 29

The normal distribution is symmetrical around a= N. as is the
Poisson distribution for large N.

For both the Poisson and Gaussian distribution it can be shown that
for alarge and >.At~ 1:

oa = .IN ~ .Jd; o. = .IN: ~ .jo; OD =t = J~;

OR = .JO _JR (11.19a) .
t:.J t:.J

U. STATISTICAL INTBlI1'S"TATION OJ' .BSULTS '" J
!

For N (or a) > 100 and 1I ~ a, tlte Poisson distribution ea.t. ...

replaccd by the normal or Gaussian distribution:

,
r
I'

i'
I
".4

II l<;#

Ii

II
I;
~

~
I:

1,1
j":

i
"

~

(ILl8)
Na

pea) = - exp (-N)a!
on condition that >.At ~ 1 (:;;0.01) and N.~ 1 (:2: 100).

The above distribution law is also valid for very small disintegration
rates, suoh as D = N/At = 10 dpm. Note that, fol' small disintegration
rates, the distribution is not completely symmetrical around a= N.

where c represents the arithmetio mean of the 11 oheervations.
The statistical error given by this equation and that given by

equation (11.15) should agree if the exporimental data are truly
statistical. If the equipment has produced counts (spurious counts.

,
~.



m. Counters and Background

(D) STANDARD DEVIATION FOR RATEMETERS AND IONIZATION

CIumlERS

According to Kip el aI. (19) the standard deviation of the counting
rate may be estimated from the relation:

a = .JRj2k(l) = 0.71.JIIjk(l) (11.21)

where II is the average pulse rate (in cps), and k(t) = RO, the time
constant of the circuit (R in ohms, 0 in farads). The fractional standard
deviation of a single reading is

Hence, knowing k(l) and determining II by calibration, the standard
deviation may be assessed. If k(l) is not knO\m it may be estimated
by observing the recorded activity as it falls to zero after an active
source has been remov•.d from the counter. k(t) is equal to the time
nec....ry for the observed reading to fall to Ij_ (ca. 37%) of its original
value. If k(t) is determined in this way with a recording ratemeter, the
pen drag should be reduced to a minimum.

(11.25)

(11.26)

!!.lejlilB = ,1/1 = (RejRB)'/1

lilej(lile + !!.lB) = !!.lejT _ ,1/1/(1 + ,1/1)
and

or

(A) CHOICE OF !!.lej!!.lB

According to Table U.3 (1) and to equ"tion (11.16) one can write:

v(8) = ,,'(8) = ,,'(0) + a'(B) = Rel!!.le + RBj!!.lB (U.23)

The fractional stsndard deviation a/ = a%/l00 of the measurement Rs
is given by •

s a'(8) Rej!!.le + RBj!!.lB ,j!!.le + Ij!!.lB (11.24)
a/ = Rl - (Re - RB)' = RB(' - I)'

where, = RejRB.
To use a counter efficiently one must choose either !!.leiT for a

fixed totsl time T = M.e + !!.lB so as to reduce "/ to a minimum,
or lilejT for a fixed a/ to reduce T to a minimum. Both criteria are
equlvalent and lead to the same result. Using the first criterion for a
given sot of sample and background rates (i.e. RB• Re, , and T given),
lile must be chosen 80 as to reduce the nominator of equation (11.24),

,j!!.le + Ij(T - !!.le)

to a minimum. Thus the derivative of the nominator with respect to
lile must be Zero:

-'I!!.l~ + Ij(T - !!.le)'. = 0

,11. STATUlTIQ.A.L lNTERJ.>RETA..TION OM RESULTS

given by [{4OO' /')' + (641/')'Jl/' = (464)1/' = 21.5. Hence the aotiv••J'
of tho sourCe is 336 ± 21.5 counts.

Tho final precision is thus determined not ouly by the activity nf the
source and by the background activity, but also by the counting tinIea
lile and lilB.

If ouly a limited measuring time is available, e.g. haoause large
series of samples must be counted, the choice of !!.le and !!.lB becomes
importsnt (0 refers to sample plus background; D to backgroundalone).
The choice of a deteetor with a sultsble signal to background ratio is
also of interest, partieularly when the counting rates are low and when
the counting rate of the sample Rs - Re - RB' is smaller than the
background rate RB• In the following discussion, the assumption
lile < T 1/' is made.

(11.22)ajR = (2I1k(I))-I/'

In practice, the activity of a source must be estimated by the differ·
ence between the observed activity, obtained with the sourCe present,
and the natural background activity in the absence of the source.
Hence the rules for error propagation (see Table 11.3 (I)) must be
applied. If the total number of counts obtained in a given period in
the presence of the source is 400 and the natural background gives 64
counts during the same period, then the expected standard deviation
a of the net result, obtained by the differenco 400 - 64 = 336, is

526 W:l NEl)TRON ACTIVATION ANALYSIS

electrical noise, etc.) it would be noted that the positive and negative
values of the residuals Ci - c would not occur "ith about equal
frequency, and the standard deviations calculated in the two ways
would not agree. If a small difference is found between the results
of equations (11.20) and (11.15), a X··test can be performed to find out
whether the difference is significant or merely due to the finite number
of observations.

,I
I

i
i
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The optimum !:Uel!:Us r..tio lIS .. function of Rs = Re _. Rs ..nd of
Rs c..n be rood from the nomogr..m in Figure 11.7 (20).

Substituting for !:Ue ..nd for t.ls in equation (11.24), the minima.l
fr..ctiona.l st..nd..rd devi..tion a/ for .. tota.l counting time T becomtlS:

[r1/'(1 + r' /'lI/T + [1 + r1/'l/T' (r' /' + 1)'
~= =~:-:--'--7.-:
I Rs(r - 1)' T R.s(r - 1)'

(11.27)

or

aj - QIT
where

(r1/' +1)' (r1/' + 1)'Rs
Q- - -'---,:;-'--

Rs(r - 1)' Rj

Equ..tion (11.27) ca.n also be written Il8 follows:

1

(11.28)

(11.29)

Fig. 11.7. OpLimwn tu./~I~ as a funlJtion oCbackground rate R. and counting
rate R. - Rc- R6 (20).
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a/ = (r1/' _ 1),jTRs

since (r - 1) - (r',J' + 1) (r1/' - 1).
Hence,

RU' - (1 + a/,jTRs)la/,jT

so th..t for the net count r..to of the source (Rs - Re - R.s):

Rs - (~+ 2a/,jTRs)/ajT (11.30)

Equ..tion (11.30) expr688e8 the minimum observa.ble counting ra.to of
the source which will h..ve .. fractional sta.nda.:rd devi..tion afo when
recorded with .. counter ha.ving .. b..ckground RB for .. total time T.
optim..Uy divided between t.1e a.nd !:Us.

Ezamplu:
(..) Re - 176 cpm, Rs = 39 cpm. Rs - 137 cpm. r - RclRs­

4.51, !:Uel!:UB - rtf' - 2.12. t.1e1T - 2.12/3.12 - 0.68. Q - 2 x 10-'.
If T is fixed ..t 100 m. aj (min) - 2.05 x 10-'. 0/ - 0.0142 or a" _
1.42%, i.e. with optimal time division (!:Uc - 68 m. !:U.s - 32 m) the
minim..l possible percent&ge standa.rd devi..tion is 1.42%.

(b) Requiring for the aa.me aa.mple a percentoge sta.nda.:rd deviation
of only 3%. a/ - 0.03. aj - 9 x 10-', T(DlIol - Q/aj ~ 22 m (!:Ue ­
15 m, t.ls - 7 mI.

(c) When counting for .. totol time T - 100 m in optimum conditions
the minimum counting r..to Rs, whirh ca.n be recorded by this counter
with So stand..rd deviation of 3% is (1 + 0.06,j39OO)/9 x 10-< X 100
- 473.8/9 ~ 53 cpm.

The optimum time division in this C&86 is !:UC ~ 60 m a.nd !:U.s ~
40m.

If the sample rato is much higher thlln the b&ckground r..to (Rs:>
RB). equ..tion (11.29) ca.n be simplified. as r'" + 1 ~ r'"

Q ~ rRBIR's - Rc/~ ~ Rs/~ - Ra' (11.31)
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If however Rs~ Rs, r ' " + 1 == 1 + 1 = 2; hcuce

Q = 4RsIR~ or l/Q = R~/4J:B = JlI' (11.32)

M is called the figure (or factor) of merit of " couuter in the region
where the background is important (sec furtl.l·r)

1lI = Rs12.JRs (11.32a)

From equation (11.28) follows that the condithlll for minimal (II (fixed
T) or minimal T (fixed (II) is that Q be a minimum (1)).

(B) CHOICE OF CoUNTER WITH MnmUL.Q CRITERION

The minimal.Q criterion allows one to choose the best amon" severalo
counters or among s6yeral operating conditiuns.

If the ratio of the counting efficiencies for "amplo and background
is a constant while the sensitivity is changell (r 1 = r ,), it appcars
from equation (11.29) that

QJQ! = RB2R~,IRs,R~. = RS1IRs• = Dsz,jDsz, = 'l/z,

since RB1IR., = RBJR... Oniy the effioienoy determines the quality
of the counter. If z. > z" then Q. < Q,. so that on the basis of the
minimal Q criterion one can conclude that counter 2 is the better
one. In this case it is always advisable to increase the efficiency z as
much as possible.

If the ratio of the efficiencies for sample and background is not
constant with changing sensitivity (r, 1'r.). both R]IRs and r depend
on the counter.

If Rs> Rs (r> 1) for both counters. equation (11.31) can directly
be used:

Q. RB, DsZ, ZI

Ql ::::: .Rsl = Dsza = %:,l"

Under this condition the background is unimportant and. again, only
the ratio z,lz. determines which counter is superior. For high dis.
integration rates one should choose the instrument with the highest
efficiency.

If Rs~ Rs (r == 1) for both counters. equation (11.32) can directly
be used. Counter 2 will be superior to counter I, if Q. < Q,. Le. if
J[. > M,. In that case JlI is a suitable figure of merit, consequently

both Rs (=Dsz) aud BB must be considared to judge what counter
should be chosen.

Use of the above expreBBions for comparing detector sensitivities
generally involves the replacement of Bs by the produot of the sample
disintegration rate Ds and the detection efficiency z. Various detectors
are then compared by examining their (J.values. Such a procedure
suffers from a number of limitations (21):
(1) no allowance is made for short lived radioactivity;
(2) interferenoe - especially "decaying" interference - is not con·

sidered;
(3) the formula may not be applicable to the comparison of critical

levels or detection limits (see further). because type 1 and type 2
errora have not been inoluded.

(4) the factor M can only be used on condition that Bs«BB' This.
factor could lead to a wrong conclusion for WD and WQ (see further).
This means that the exact equations of the form WD= yLD can
lead to the conclusion that with one detection system the lower
limit of detection is reached, but thet with the other one the lower
limit of determination is obtained.

IV. Limits for Qualitstive Detection and Quantitative Determination
Applied to Radiochemistry and Activation Analysis

(A) INTRODUCTION

Examination of the analytical and radiochemical literature for an
appropriate deficition of the "detection limit" reveals a plethora of
mathematical expressions and widely varying terminology, as Was
pointed out by Currie (21). One encounters for example terms such as
lower limit of detection (22-25), detection sensitivity (26). sensitivity
(27). minimum detectable activity (or mass) (28) and limit ofguarantee
for purity (29) - all used with approximately eqnivalent meanings. The
nomenclature problem is compounded, because other authors make use
of the same or very similar terms to refer not to the Ininimum amount
that may be detected, but rather to the Ininimum amount which
may be determined with a given relative standard deviation. Still other
expressions, such as. the "detection limit at the 95% con1ldence level"
are used without explicit mathematical definition, which leaves the
meaning rather ambiguous. Moreover, various "nonstatistical" de1ln1.
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three speoifio levels. as proposed at the National Bureau of Staw.. j
(21). (i) a decision limit (oriticallevel): Lo (Lo(o) cOunts or Lo(R) opm);
(ii) a detection limit: LD (LD(O) counts or LD(R) opm); (iii) .. limit for
quantitative determination: LQ (LQ(c) counts or LQ(R) opm).

In the following paragraphs the nature of these quantities will be
discussed in detail. taking into aoocunt the half.life of the radioisotope
of interest. the detector background (in the energy region of interest).
the optimum counting time in the ..... of short lived radioisotopes
and the required con1ldence level. The results will also be applied to
coinoidenoo counting.

It is obvious that the .tatistics of decision. detection and deter.
mination apply directly to the observations (activity) rather than to
the underlying quantity and therefore the following dis<lusslon will
deal specifically with the observed signal and its associated random
distribution. Statistical conclusions drawn in terms of the net signal .
may be extended to the related physical quantity by means of a calibra.
tion factor. In analytical 'practice it is convenient to express the
"lower limit of detection", ••• in terms of the m.ass WD of the element
to be detected under given irradiation and mouuring conditions:

WD - yLD(R) or WD - ,.LD(C) (11.33)

If LD is a oounting rate, the calibration oonstant y is expressed in
gram (milligram, microgram) per opm or per ops, and dependa on the
neutron flux. the isotopio abundanoo of the target nuolide. the atomio
weight of the target element, the reaction cross ..ction, the irradiation
and waiting time, th~ disintegration scheme of the radionuolide formed.
the counting geometry, the effioienoy of ';he detector and the fraction
of the pulses which are counted. The factor,. can thus be caloulated
from equation (10.1), if the parametera of interest are known.

If LD is a number of counts, the calibrat11n oonstant y is expressed
in gram per count.

Tables with caloulated I/y.values can be round in references (30.31).
The count rate per minute per microgram of target element. obtained
by 4.. beta and alphe counting, Bingle.gamma counting. gamma-gamma
coincidence counting. beta-gamma coincidence counting and triple­
coincidence counting were computed byWing and Wahlgren (30) for
irradiation times of 0.5; 5: 50: 500 and 5000 m at a thermal neutron
flux of 10" n cm-' .-1.

Induced activities (opm/J'og) as a fUliction of irradiation time and of

I
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tiona appear in ",rich the detection limit is equatell to tho background,
10% of the background, 100 dps (y.radioactivity), or 1000 dpm
(CIt" p., y.radioactivity). In ordor to compare some .,fthc mcre oommon­
ly used definit,ions, Currie (21) has calculated "d,·tection limits" for a
hypothetical experiment in which a long lived y.emittor was counted
for 10 minutes with an efficiency of 10%, using a detoctor witlr a
baokground of 20 opm. The results, plotted in increasing order in
Figure 11.8, are unsatisfaotory, for they encompass noarly three ordera
of magnitude! .

In the subsequent disoussion, a distinctior. will be made between

2345670
Definilion

Fig. 11.8. Comparison of some commonly.used definitions of detection limit
when counting a long.lived )I-emitter (or 10 m with an efllciency of 10%, uaing ~
detector having & background of 20 cpm. Definitions: 1. Baokground atandard
deviationa~;2.10%ofthebackground;3.2a.14.3a.; 6. 3a.+3a

D
(aa _ aample

standard deviation); 6. Twice th~ background; 7. 1000 dpm.; 8. 100 dp3. (21).
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waiting time arb also given by Girardi (31), taking into account the
detection efficiency ora 7.5 x 7.5 em NaI(Tl) dctcctor for the gcometry
and the photopeak used. The data are given for thermal neutron
fluxes of 6 x 10"; 1013 and 2 x 1013 n cm-2 S-I. Experimantal
resulta in cpm under the photopeak per gram elcment for single-gamma
counting are given by Ander,s (32) for an irradiation time of 5 m at a
flux of ca. 10' moderated n om-' s-, and by Yule (33) for an irradiation
time of 1 h at a thermal neutron flux of ca. 4 x 1012 n cm-I s-'.

b'· .,~ .1.1. l:f.1'.A.·l'J.I:)·.1'J,.U~ .u'lo·.&.'A.Uo.t''"'JIi.&.'AJ.'....v ..~ VJI AA03\,1 .... "'o:a '~',;"il.,

,
be detected. The smallest Soctivity, corresponding to the value __.18

called the "minimum detecte.ble true Soctivity" and will be identified
with the "lower limit of detection" (22).

The foregoing discussion can be sllll1I.ll8olize aB follows:
(i) if the result of a counting yields a count difference Os > Le,

one ce.n conclude (/I posteriori) that the Soctivity is present.
(ii) if e.n activity as - LD is present in the sample, one knows (/I

priori) that the ane.lytical prooedure may be relied upon to lead to ita
detection.

b 0,

1. PM Orilical Level or Deci8i<m Limit

1'(1)

As Soppears from Figufe 11.9, the critical level is mathematically
given by

La = ",a(O) (11.341

The pare.meter '" is a multiple of the ste.nderd deviation, determining
the probability of making the type I error. Usual aocepted values for
'" are 1.645; 1.960 or 3.000. Contrary to Table 11.1, this does not
correspond to a confidence level of 90, 95 e.nd 99.73% reapectively,
but to a confidence level of 95, 97.5 e.nd 99.865% reapeotively. Indeed,
the probability of making the type 1 error is respectively 10/2 - 5,
5/2 = 2.5 and 0.27/2 _ 0.135% only (one aide of the Gausa ourve).
For that reason, the symbol" haB been replaced by "1' The problem
of the confidence intervals is disousaed in dete.il by Currie (21).

o 1:(C)~lo) ~(c) "s
1'(2)

Fig. U.9. Signal deteatlon. Definition afcrlt.icallevel Lola) - 1',0(0) clateatlDn
I1mit L ..(c) _ L c(cl+I',.(D) and detenninatlDn I1mit Le(a) - ¥e (21).

1'(2)

Q lipel
error

(B) DEFINrrIONS - SIGNAL DETECTION

If the observed number of counts from a sample + background
and from the background alone, for an equal time of mcasurcment At,
are respectively OS+B and 0B, thcn the count differcnoe Os = oS+B - 0B

is a measure of the net activity of the sample. However, owing to the
statistical fluctuations, this count difference at the averages uf the
baokground OB and the sample Os may obtain various values. At a
relatively small value of Os, the presence of the activity in the sample
becomes doubtful. Therefore a so·called "critical value" La is intro·
duced, that is often called in the literature the "minimum significant
count difference" (22,26) or "dccision limit" (21). For Os > La one
assumes that the signal is present, for Os < La the decision "not
detected" should be reportcd. The statistical character of the count
rate means that such an assumption must always be connected with
a probability of making a wrong decision. Two kinds of OlTOrs may
occur:

(i) The measured value Os > La; one concludes that the activity
> 0, when in fact the activity = 0 (type I error). The probability P,
of making this error depends on the accepted value of La = ",a(O)
(Figure 11.9 curve a).

(ii) The mersured value Os < La; ouo concludes that the activity =
0, whcn in fact the activity> 0 (type 2 error). Such a case is illustrated
in Figure 11.9, curve b. Despite the fact that the signal >0, So
relatively large probability P 2 exists" that the measured count diircr.
ence < La. The probability P 2 of making this error depcnds on La
and on the sample activity, I.e. on the position of the Gauss curve on
the os-axis.

For Os = LD (Fignre 11.9 curve c), the probaLility of making the
type 2 error is already so small, that the signal will practically alwa)'s
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standard deviation of a number of counts Os = LD:

a'(D) = 0'(0) + LD

Hence, equation (11.37) becomes:

L D - Le - ",,(0'(0) + LD)'/I

(LD - Le)1 - ~a'(O) + ",~LD

Remembering that Le - "" a (0) one obtains:

LD(LD - 2Le - "'~) =G

For short lived radionuelides (and/or) background activities, LD(R)
and/or Rs represent average counting rates (S66 further).

]'rom these equations, the following conclusions can be drawn:
(i) The longer the counting time, the lower the limit of detection.

Such long measuring times are obviously limited to long.lived isotopes
and may be of interest in the case of long activation times (several
hours or days). i.e. in the case of reactor activation analysis. Extremely
high sensitivities can be obtained in this way.

(il) The limit of detection depends on the accepted confidence
level (.,,).

(iii) In many practical cases, ~ <: 2.".jOB, so that LD(o) z. 2Lc(0)
and Ln(R) z. 2Lc(R) (see example further).

(iv) In the caac of zoro background, it should be noted that LD(o)
or Li.(o) is not zero, bUh~ (counts), and LD(R) or Lj,(R) - ~/lil (cpm)

Using equation (11.30) and assuming lil - 0.5 T, it is possible to

(11.38)

(11.39)

(11.39a)

(11.38&)

(epm, cps)

(epm, cps)

LD(R) = "'fIlil + 2.".j(2Rn/lil)

Li.(R) = ~/!>l + 2.".jeRB/!>I)

Thus:

LD(O) = :!!~ + 2,,,,.j208 (counts)
(paired observations)

LD(o) = ~ + 2lt,.jon (counts)
(well known background)

The corresponding counting rates are given by:

•

2. TM Lower Limil oj DolecliO'll

and
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The variance .ur a count difference Os = OS+B - OB is given by
a'(S) = a'(S + B) + a'(B) = (os + 20B). If no activity is present,
Os = 0 ± 0(0) where 0(0) = .j20B. Hence, the critical level is given by

Le(o) = "".j20B = "".j2RB!>1 (counts) (11.35)

where OB is the number of background counts and RB the (average)
background rate. When dealing with low s.ctivities, equation (11.25)
is reduced to !>Ie ~ lilB = !>I = 0.5 T. Equation (11.35) is valid for
so called paired observations.

If the background is constant, and very well known by a long
history of observations, one can state that o'(S) z. a'(S + B) = Os +
0B. If no activity is present, Os = 0 ± 0(0) where 0(0) = .JOB. Thus,
by measuring the background during a long time (}>lil), one can
decrease the critical level by a factor .j2. Then

L,,(o) = "".JOB = "".jRB!>I (counts) (11.35a)

where the prime serves as a reminder that the background iR well
known.

The corresponding "minimum significant counting rate differences"
Le(R) and Le(R) are thus given by

Lc(R) = Le(o)/lil = ",:.j(2RB/lil) (cpm, cps) (paired observations)
, (11.36)

Le(R) = L,,(o)/!>I = .".j(RB/!>I) (cpm, cps) (well kno,m background)
(11.36a)

For short lived isotopes Le(R) represents the average minimum signifi.
cant counting rate difference (see further).

Mathematically. the "lower limit of detection", which is used to
assess the a priori detectability, is given by

LD = Le + ""o(D) (11.37)

as appears from Figure 11.9. To simplify the discussion the same
parameter." ,viii be used to determine beth the probability efmaking a
type 1 and a type 2 errer. In the above equation, oeD) representa the
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calculate the fractIOnal standard deviation of La{R) or LD(R). For
La(R) one finds

1 + [I + 2",/J{2RBtlt)]'/'
a/ = (H.4I)

2",
If the background is not too small, I.e. 2",/J(2RBtlt) ~ I, a/ ~ II""
At the 95% probability level", = 1.645 (see above), so that a% ~ CO%.
For LD{R) one findB a% ~ 30% at the same confidence lcvel.

LQ(C) - ~[1 + (1 + 4a~O)r] (ll.«)

For paired observations, a'{O) = 2CB = 2Ratll. Setting a/{Q) _ 0.1:

LQ(c) = 50 [1 + (I + 0.08 ca)'/'] (counts) (1l.45)

For a well-known background:

Lo{c) = 50 [1 + (I + 0.04 CB)'/'] (counts) (1l.45a)

The corresponding values fo1'-LQ{R) (long lived isotopes) are found by
dividing by tll. For short lived isotopes, LQ{R) represents the average
counting rate.

Example:
For a counter with a background of 10 cpm, the values La{c),

LD(c) and LQ(c) will be calculated. assuming a· counting· time of 10
minutes and a confidence lenl of 95% ('" _ 1.645)

La(c) = 2.33JRat.l = 23.3 counts (paired observations)

or

or

Lo(c) = 1.64JRat.l - 16.4 counts (well known background)

This means. if the observed number ofcounts in 10 minutes for aignal +
background ~ 123.3 (or 116.4). the deciaion "detected" ahould be
reported.

Note that this count difference is known with a prec:aIon of ±66%:

La(c) = 123.3 - 100 = 23.3 ± J223.3 - 23.3 ± 15.3 counts (±66%)

LO{c) = 116.4 - 100 = 16.4 ± J1l6.4 - 16.4 ±10.8 counts (±66%)

If onc wants to be sure a priori. with a confidence level of 95%. that
in the above conditions (RB• t.l) an activity will be detected, the latter
must be at least

LD{c) - 2.71 + 4.66JRBt.l - 49.2 counts (paired observations) or
Lj,(c) = 2.71 + 3.29JRat.l = 35.6 counts (well known background),

t.I,'. ~ ,~.a """' ~ .6..O. """""' v , V~ .u.A~I,I 4o:J _<II. '. ~:;. ;~

i where LQ{c) is the value of the net signal C8 with a standard davia~. _)
a{Q); a{Q)/LQ(c) = IllcQ - "'/{Q) is the fractional standard deviation;
a(Q) = (~{c) + a'{O))'/', hence

L~{c) - ~LQ{c) - ~a'{O) - 0

(I1.43)

{I1.40)1 + 2a,J(2RBtlt) = " J{2R IAt
2ajtlt ,B )

Solving for alleadB to

LQ{c) = LQ(R)tlt = 50[1 + 0.2J{2cB)] (couuts) (I1.42)

A different approach is given by Currie (21) for t.l #- 0.5T. The results
are however practically equal. if the background is not toe small.
Evcn for RB = 1 cpm and tlt = 16 m. the result. for LQ differ by ca.
20% ouly.

The determination limit is defined as (see Figure 11.00)

3. The Limit of Q1ulntitative Doterminatum

The above data for a%{La) and a%{LD) are not entirely satisfactory
for a precise quantitative determination. It is obvious that one can
calculate a "de~rmination limit" for a desired percentage standard
deviation (2I). Such a definition is similar to that u3Cd by Adams et al..
(34). who d.fined a "minimum working concentr.tion" a3 that at
which the pcrcrn'.age standard deviation is 10%. as far as ,counting
statistics are involved. The term on the left of equation (I1.40) expres3Cs
the minimum observable counting rate due to a radioactive source.
which will have a given afo when rccorded by mcaus of a counter with
a background rate RB. assuming paired observations. For a% = 10%.
al = 0.1 one findB: .

1 + 0.2J{2RBtlt)
LQ{R) = 0.02 tlt (cpm)
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or

La(R). [I _ exp (-AIJ.!)] = u,.j2RBtIJ
.\

u,.\.j2RBtIJ
La(R}. - I _ exp (_ AIJ.!) (paired observations) (1l.47)

Lo(R). is a minimum if the derivative of this equation with respect
to lJ.t is zero. i.e. 0.5 (1 - exp (-AIJ.!)] u,.\.j(2RB}tIJ-'" -u,.\'.j(2RB}
lJ.t'" exp (-AIJ.!) _ 0, or exp (+AIJ.!) - 1 + 2A1J.!. The result is:

(1l.48)tIJ = 1.81 P",
The same .solution will obviously be found for the "minimum detect­
able counting rate" (_lower limit of detection) LD(Rl. at I - O.

It can be shown that the limit of detection reaches a minimum
for tIJ _ 1.81 P", iCthe condition v,<.j(RBT"o> is fulfi11ed (22). For
small values of RBT", (i.e. the background observed for tIJ - P"o>
the optimum measuring time is somewhat larger than 1.81 and depends
on RJjT", (22) (Figure lUO). A practical example using 5.7 h """Cs
has been described by Dybczyflski (35).

Substitution of equation (1l.48) in equations (11.35), (1l.38) and

given baCkgr::;::::·:: :::i:i:;::::I."~:~~::-Ofde;'- ]

or the limit of determination. It can be shown however that an
optimum counting time exists. .

If at the beginning of the measuring time tIJ the sample counting
rate is R., the net number of counts recorded after the time tIJ is
given by

Os = R. f~ exp (-.\l) dl - ~. [I - exp (-AIJ.!)] (IU6)

whereas the (constant) background yields 0B - RBtIJ counts. During
the decay of the rsmonuOOde of interest. an increasing number of
background pulses are counted. Conuquently, there will exist an
optimum measuring time. which allows the detection of the amallest
stsrting rate R. in l,he presence of a constant background rate RB. .

According to equation (11.36) one can write for the "minimum
significant counting rate difference" (eritical level) at I - 0:

V·4
I

~1:<;~ NEUTUON AO'l'lVA'l'IO.N AN,ALYf:ilS

i.e. 0S.B = 1411.~ (or l35.6) counts. Assuming long lived radioisotopca,
LD(R} - 4.92 cpm and LD(.R} = 3.56 cpm.
If the detection efficiency of the counter is 20%, the limit of detec­

tion is a disintegration rate of 24.6 dpm. respectively 17.8 dpm.
Note that a number of counts = LD can be measurcd ",th a standard

deviation of ±32%:

LD(O} = 149.2 - 100 = 49.2 ± .j249.2 = 49.2 ± 15.8 counts (± 32'10)

LD(o} = 135.6 - 100 = 35.6 ± .j135.6 = 35.6 ± 11.7 counts (±32'10)

The determination limit, assuming "% = 10%. in the above conditions

4. Application to Shorl Lived Radioi&otopea and Long Lived
(CollStalll) Background (simple counting mcthod)

The same equations for La, LD and Lo are valid for short lived
radionuclides, i.e. the same number of counts must be recorded for a

Lo(o} = 50 [I +(I + 8)"'] = 200 counts (paired observations)

Indeed Os = 0S.B - OB = 300 - 100 = 200 ± .j400 = 200 ± 20 counts
(± 10%)

Lil(o} = 50 [I + (I + 4)'1'] = 162 counts (well knO\m hackground)

Indced: Os = OS.B· - CB = 262 - 100 ;.. 102 ± .j262 = 162 ± 16.2
counts (± 1O%), since the errcr in 0B is assumed to be negligible.

It is obvicus that lower values for La. LlJ and Lo will be obtained
when counting for a longer time lJ.t. This procedure is obviously

. limited to long lived isotopes.
It should be borne in mi'ld that there exists a considerable difference

between the lower limit of detection, the lower limit of determination
(which both imply that the identity of the measured activity is known,
i.e. that the combined proceliurc of chemical isolation and/or counting
should be specific for the radioisotope of interest) and the lower limit
of identification (21.22).

The lower limit of determination can be defined as " "minimum
working concentration", at which the relative standard deviation is
for instance 10%. When identification is required. the radiochemical
purity must be checked by measuring the energy of the radiation
and/or the half·life. For that purpose, the counting rate must often
be higher than LD(R). e.g. one order of magnitude.

T
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Bcckground (counlstT,,2)

Fig. 11.10. Relationship of the optirnwn counting tima alIT". ami the
obser\'ed nwnber of counts of background in the tim. T (',.)1,'t -_.

....... ~"'Ao , ~-, ",,, _- -_ -

The "lower limit ofdeteetion" in terms of tho mass Wo of the w:,.~~
under given irradiation and. mOSBuring conditiona is given by eqUAtion
(11.33). Thus: Wo = ,.Lo(c). whore 1/,. is expressed in counts per gram
for a given counting time lit.

One can also state Wo = ,.Lo(R). where 1/,. is ""Pressed in cpm per
gram at I _ O. EqUAtion (11.47) has been derived. assuming IitB - t.Jc.
By measuring the background during a longer time than tho sample,
one can obtein at most a decr0SB8 in the lower limit of detaotion and
related qUlUltities by a factor J2.

Example:
Assume that the 7.7 m positron.emitter 18K is detaoted by

meana of the 0.511 MeV positron annihilation quanta using a sodium
iodide crystal with a background of 20 cpm and a detaotion efficieney
for 18K of 32%. According to equation (11.48) a counting time of 14 .

m was choson (21).
Using the general ~quations (11.35), (11.38) and (11.45) or (11.49).

(11.50) and (11.51) one finds for '" - 1.645 (95% confidence level,
paired obsorvations):

Le(c) = 2.33 J(RaIit) = 2.33 J280 = 39 counts

Lo(c) = 2.71 + 78 = 80.7 counts

LQ(c) = 50 [1 + (1 + 0.08 x 280)'/'] = 292.5 counts ("% = ±10%)

Supposo that an obsorvation of sample + backgIound gives a total
of 310 counts. The net signal would then be '8 - 310 - 280 - 30
counts. with an estimated standard deviation of J(310 + 280) - 24.3
counts (paired obsorvations). However 30 < Lc(c) and therefore such
an obsorvation would load to the conelusion, "not detscted".

The same result can be found using eqUAtions (11.52). (11.53) and
(11.54):

Lc(Rl. = 1.84 x 1.645 x J(20/7.7) = 4.9 cpm at I = 0 (or 15.3 dpm)

Lo(Rl. = (2.71/1.81 x 7.7) + 3.69 x 1.645 J(20/7.7)

= 0.194 + 9.8 ~ 9.8 cpm at I = 0 (or 30.6 dpm)

~(R)o = LQ(c)/1.03 i< 7.7 = 292.5/7.95

= 37 cpm at I - 0 (or 114 dpm).

Le(c) = 1.34 u,J(RBT11.) (11.49)

Lj,(c) = ,,~ + 2.7 u,J(RBT11')
(11.50)

3

t"--... r--I- .,.3 (P-99·865%

I

I
1

(11.45) yields:

Le(c) - 1.9 U,J(RBTlI,l

Lo(c) = u~ + 3.8 U,J(RBTlI')

LQ(c) = 50 [1 + (1 + 0.144 R BT lI ,)'/']

LQ(c) = 50 [1 + (1 + 0.072 RBT,/.)'/']
(11.51)

The ratio cs/R. for lit = 1.81 T 11, follows from equation (11.46) and is
1.03 T 11•• Hence:

La(Rl. = La(c)/1.03 T'/' = 1.84u,J(RB/T'/') (11.52)

Lo(Rj.= Lo(cl/1.03 T lI , = "fl1.81 T'/' + 3.69 ",J(RB/T,/,)
(11.53)

LQ(R). = LQ(cl/1.03 T'/' = 37.5 [1 + (1 + 0.144 RBT., )'/']
TlI' u,

. (11.54)

The values for La(Rl•• Lj,(R). and LQ(R}. can be founu. as described
above.
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Again the general equations (11.35). (11.38) and (11.45) for Le. LD
and LQ are valid. where CB is the numher of baokgro~d counts
recorded in the optimum counting time - l: x Tlf" Equ&tion (ll~)

can be used to calculate the critical initial counting rate Le(R), if
RB,. is given.. .

For a nondestructive analysis. RB depends on the matriL Schulze
(23) calculates the matrix (background) count.ing rate RB for aimple
gamma ray spectrometry. taking into acoount the specifio activity per
milligram of matrix element. the decay scheme. the geometry factor.
the total officioncy of .. 7.5 cm x 7.5 om No.I(Tl) crystal Bond the
rel..tive distribution of pulses in go.mm"l'80y spectr.. up to 2.7 MeV.

A nomographio estim..tion of the detection limits of an element in
complex medi.. is described by Haerdi (36).

1000
TVZIB)

Fig. 11.11. Optimum ccunt.ing tim. in t.be .... of diff.....' ha\£ liv.. for
ligna! and background ('\>'\6)' EDD1ple: 1£ 2'". - 1.8m (0••••) _ 2'".(B) _
10 m (0••••). t.be optimum ccun'h!g time la 8 m (0••••) (13~

Tv.:
8
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Considering the same sample 88 above, the initial counting rat.e is
given by 30/1.03 x 7.7 = 30/7.95 = 3.8 cpm. This value is <4.9 cpm
and, again, such an observation leads to the conclusion Hnot detected".

A quantitative determination (u% S ±10%) i. poasible if the
disintegration rate of "K at I = °is ., 114 dpm.

Until now, the 8B8umption has been made that the background rate
is constant. Ii however 1m element is determined without chemical
separation, it must be counted in the presence of t·he matrix which
can alao be radioactive. This is mostly done using simple gamma ray
spectrometry or coincidence methods. Ii both the activities from the
impurity and the "background" are long lived, the problem is reduced
to case 1.

If they are not long lived, but "!::1 "B, the same conclusion is
valid. It has however no sense to choose a AI> approximately 2.5 Tlf"
as mOre than 80% of the radioactive isotopes decay during that time.

If the half·life of the background activity is shorter than that of
the radionuclide of interest, it is obviously recommended to start the
counting after the decay of the matrix activitr.

5. Application 10 Shorl Livea Radioisolop.. and Shorl Lived
Backt;rou.nd (simple counting method)

If neither the counting rato of the activated impurity Rs nor the
background rate RB is constant, the number of counts recorded from
the nuclide of interest is given by equation (11.46). 'fho number of
bsckground counts is given by a similar equation:

CB = RB.o[1 - exp (-ABAI)]/AB

Substitution of this equation in equation (11.47) yields

J(I - exp (- AB~t»)

Le(R), = ", J(2R B,o) ABolt
fil 1- exp ( - ,ut)

.\Ill

Again, the aasumption Ate = AlB = III has been made (paired ob.
servations).

If A> "B there exists also an optimum measuring time, which
depends on " and on "B. This time can be estimated from Figure 1!.11
(23) which can be compared with Figure 11.10.



or

a l (C1J') ::: o~ (~+~) (11.57)
c1 c.

Hence the criticILI ievel or decision limit is given by:, .

Lo(e) _ "10 (0) _ "10B,J2 (~ + ~)'/' (p&ired observations)
c1 c.

• (11.58)

(11.60)

(11.60&)

(
1 1.\,/1 (well known r&ndem coincidence ,

La(o) = "lOB' 0, + 'CJ rILto + DlLturs.l background) (11.58a)

ILnd the 1::)li~~~0:::;:0::~ +2",cB,J2 (.!.. +.!.)'/I
Cl c.

(,,&ired observILtiona) (11.59)

(
1 1)'/1 (well known r&ndom

Li>(c) = ,,~ + 2"1°B' 0,+ 0
1

coincidence rILto +
DlLtuts.l background) (11.691.)

After introduction of the counting rates B, - oJI:.I (first ManDel)
B = oJAt (lLOcond channel), BB' - C/i'/I:.I = 2TC,OJI:.I1 &nd Lo(B) ­
k(o)/I:.I. LD(R) = LD(o)/At (assuming IOD.g lived radioisotopes), the
above equations C&n be written as follows:

Lc(B) - 2","'J2 [B,BI(B, + B i lIAl)l/1

La(B) = 2",T [B,BI(B, + BI)/I:.I)'/I

IC no ILctivity is prelLOnt eo = CB' ILnd cs = 0 ± 0(0), where

0(0) = a(eB')J2 (poked observational or 0(0) - a(cB')
(well known background)

In the ca&e of coincidence measurements, it must be borne in mind
thILt CD' is not directly subjected to the statisticallILws ofr&dio&otivity,

as is the c&&e for C" CI &nd cs:

a(c,) - JC1: a(cl) - JCI: a(cs) = JCB

Hence it is not &llowed to substituta a(oB') by JOB" Using the laws
of erro~propaglLtion (Table 11.3), a(oB') os.n be calO1Il6ted from ~U8tion
(11.56)

(C) THE LoWER LIMIT OF DETECTION AND 0., QUAlITITAnvx DETER.

I>IINATION FOR COINCIDENCE CoUNTING

1. Definiti01l8 and General Equutiolls

Consider a radionuclide in the decay of which time correlated cu·
cades occur, which can be detected with a suitable coincidence system
(see chapter 10, Section III, E, 1). Assume that this activity is to be
counted in the presence of a relatively high "interfering" activity,
such as the matrix activity tn the case of a neutron activated sample.
The assumption will be made here that in the decay of ti,e latter radio·
nuclides no time correlations occur which can be detected with the
coincidence set-up; random coincidences are, hOWd\~er, possible and
these are &8Sl1med to be more important than the random coincidences
caused by the natural background.

IC the two detectors of the coincidence system recor.d C, and CI counts
respectively during a time At, then the number of coincidence counts
recorded during that time is given by:

Co = Cs + CB'

Mil fn.J lIEti1'ROlI A(JT1VAT10N ANALYsiS

This proble~ 's also theoretically discussed by Currie (21).
The determination of optimum schedule end sensitivity for non·

destructive activation analysis in the presence of interfering activities
is given by Quittner el al. (37,38).

where a refers to the composite count rate S + B', S to the true co·
incidences and B' to the random or chance coincidences (+natural
background). Due to the statistical character of e, aud c, the number
of random coincidences CB' can be written as followa (13):

CB' = 2Tc,el/At (11.56)

where T is the resolving time of the coincidence circuit. aB' can be de.
termined experimentally by counting the source after "mismatchtng"
the two channels, e.g. by introducing in one channel some fixed delay
time which is~ T. At a relatively small count difference cs = eo - CB'
the presence of the activity in the sample becomes doubtful. Mathemat.
ically, the critie...1 level has been defined as La = .,1a(O) (see equation
11.34).The variance ofa true coincidence eount difference cs = eo _. CB'
=eS.B' - CB' is given by a'(es) = a'(ec) + a'(eB')'
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Fig. 11.12. L1(R) as • function of channel ratel H, _ R. - B. allo... to
choose optlmall&lDple ..!.ivit)', te. oplilllalll&:llple oioe aud/o. opllmal __
do.. (24).

broadening of the resolving time occurs which might lead to a Jea..~
situation.

(b) From the above equationa it appears that at an established level
of confidence (givllll ",). the lower limit ofdetection will improve if the
"background" rate RB' - 2TR,R. ia low and if the counting time lJ.l
is long (assuming long lived radioisotopes).

(c) In Figure 11.12 (24) the value of Lj,(R) is plotted versus R(-R,
= R ,), assuming a counting time lJ.l - 900 s, a resolving time T - 1 JAB
and a confidence level of 96% (u, - 1.545). For low channel rates
(in the ease of Figure 11.12. :s: 10· cps), Lj,(R) is constant, nl. "UlJ.l,
i.e. the first term of equation (11.611'). Thus, if the sample size "01' the
neutron flux is increased by a factor of 10, the concentrlltion limit is
improved by a factor of 10. For higher channel rates (>.10' cps). the
value of Lj,(R) increases more rapidly than R since the slope of ~e

.J

u' · 4u ~ V2 IL'oIR)a ,:. t J~l [R,Rz(R, + Rzl)

.,.1.645
"'•• 900 sec-. 1/T -10 sec
R,· Rza R

/,

z ~.
::R:= a - or '

~'I:JRl RI[R,Rz(R,· RzI)lI2a.,/2.../ii

3
L:~RI'3J,I"'t

16
1

16

1

10

and
Lo(R) = ul/lJ.t + 4U,TJ2 [R,R,(R, + R ,)/:J.tj'/' (11.61)

Lj,(R) = ul/lJ.t + 4U,T [R,R,(R, + R ,l/lJ.tj'/' (l1.61a)

Equationa (l1.59a) and (11.61a) correspond to No and a in ref. (24)
assuming '" = 3.

The limit of quantitative determination Lo(o) is found. starting
from equation (11.44) and substituting a'(O) by 20M1/(o,) + 1/(0,));
ko = 1/0.1 = 10.

Lo(o) = ~ {I + [1 + 8~, (.: + ':')J'/'}
2 ~ 0, 0,

or

LO(o) = 50 {I + [1 + O'~~,T' 0,0, (0, + o,J/'} (11.62)

Similar equationa can be calculated for LQ(o), LO(R) and LQ(R).
Some interesting conclusions can be drawn from the above equationa

(24):
(a) AasumiIig a counting time of 900 s, a reso!\;ng time T = 10-' s,

a confidence level of 95% (u, = 1.545), channel r&t"s R, = R. = R
= 10' epa and paired observationa, the limit of detection Lo(R) = 0.44
cps although RB, = 2TR,R, = 200 cps! This maana that ;m activity
of 0.44 cps can be detected even if the random ratc is higher by several
orders of magnitude (200 cps). High channel rates R are often en·
countered in nondestructive activation analysis. The effcct can be
explained by the entirely different relationahips, defining the sta·
tistical variationa of the quantities OB' and os, and is easily demon.
strated by introducing numerical values.

For the abo'l'O example, one finds:

Os = Lo(o) = 396 counts
OB' = 180,000 counts; a(oB') = (180.000) (2/9 x 10')'/' = 85 counts

CO ~ 180,396 ± 85 counts.

Note that the standard deviation of os' and Co is ca. 0.05% onl,Y.
The difference 130,396 - 180,000 = 396 ± J(85' + 85' + 396) =
396 ± 122 counts is thus quite significant. The percentage standard
deviation is ca. 31%, as expected (equation 11.41).

In this exa'llple it is assumed that the electronic e:reuit is working
perfectly. In the ease of pulse height dependent jitter. for instance.



straight line > I, i.e. further increasing the eamp,e weight. and/or the
neutron flux WOrsens the lower concentration limit. Moreover. the
detectors and the coincidence circuit may be overloaded. Thus for
coincidence measurements there exists an optimal neutron flux (for
a given eample weight) or an optimal eample size (for a given neutron
flux). Optimalization is obtsined (24) if dLi>(R)WD(R) = dR/R or
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.J{R,R,(R, + R,n = u,/2r.J:>1 (ll.63)

~:',:lf

If both the eample activity and the counting time 61 are 01', jlly
chosen, then (24):

Li>(R). ~ 2.5uUP,/, cps (Pli. in seconds) (ll.66)

Optimal counting time ill and optimal R'·value can be read from
Figure 11.13 for" given P,/, (dashed line).

Example: (see Figure 11.13)

Then, the lowest value of Li>(R) (well known random coincidence rate
+ optimum eample activity) is given by

LD(R) = 3 uUill cps (ill in seconds) (11.64)

From this equation it appears again that long counting times will
appreciably improve the lower limit of detection.

2. Applicalicm. 10 Short Lived Radioisotopu alia Lollg Lived
(ODn8lan/) Backgrov.nJ (coincidence counting)

The eame equations ill.58), (11.59) and (11.62) for Le(a), LD(a)
and LO(a) are valid, as for coincidence counting of long lived radio.
isotopes. It ClIn be shown that there exists an optimum colll:lting time,
given by 61 = 1.81 PlI' on condition that R' = 2u,r.J (R,R,(R, +
R ,)} is sufficiently high, e.g. > 10. For smaller values of R', the opti.
mum counting time 61> 1.81 PlI" nl. ca. 2.2 for R' = 1 and ClI. 4 for
R' = 0.1 (Figure ll.13 (24)).

Assuming 61 = 1.81 PlI" Le(a), LD(a) and Lo(a) can be calculated
from equations (11.58), (11.59) and (11.62) by substituting a, _ R,ill
= 1.81 R, PlI' and a, = R,ill = 1.81 R, P,/ •. The corresponding
counting rates Le(R)., LD(R). and Lo(R). at, time I = 0 are then

Lc(R). = Le(a)/1.03 PlI'; LD(R). = LD(a)/1.03 PlI.;

Lo(R). = Lo(a)/1.03 P11'

as in section IV, B, 4 of this chapter.
Again, there exists an optimum neutron flux and/or eample weight

which allows one to reach the lowest concentration limit. Then, the
lowest Li>(R), value is given by (24)

Li>(R). = 3 ul>'/[1 - exp ( - MIll (11.65)

71------+-----¥-T:---:--i

61--~--+--__,L_/_+_""7~-i

5 1-----+-hl~_:_r_+_-7;,.£:...---:-i

41-----4L;.L+M,L..-I--7~-i

R'
Fig. B.l3. OptimaJ counting time for mon lived coincidoDoeo and conataD,

background. The duhod line rep......ta the pointa witb opUmaJ 6J and R'
vaJues (24). Ordinete: T'I.(m); absciaaa: R'(,-'").



TABLE 11.5
Optimum counting time and sample activity if both

true and random coincidence rates &l'8 &hort lived
for 'I'll. (B')J'1'lI. > 5.6

o 1 2 3 ~ 5
8 14 19 24.5 2'9.. 33

At/'1'lI.(B')
R;",Al

Ezamplt:
T,l. = 1 m, TIl.(B') = 3 m, then TIl.(B')/TlI, - 3 < 5.6. Choos­

ing AI = 2.5 Til' = 2.5 m = 150 a. then 6J/TlI'(B') - 2.5/3 - 0.83
..ndRo.jAI = Ro.j150 = 13.5; Ro= 1.1 a-II' - 6 x 10-' .j{R..oR...
(R

"
• + R t ,.)} (if T = 1 1"'). Assuming R... = R.,. = R., one finds

3 R~ = 33 x 10' or R. = 2500 eps.

v. Linear Equations

(A) GENERAL CoNSIDJIB4T10Na

In an..lytical methods, one often needs to determine the para.meters
a ..nd b of .. linear equ..tion

Y = a + In; (11.67)

with ....ociated atatistical errors ±",,(a) and ±",,(b). The Ieaat aquares
method for fitting a atra.ight line to a series of experimental points ia
well known, on condition that the experimental errors in '" are small
compared with those in II and that the ",-values cover an adequate
r..nge. The former requirement is met in the examples given below.
ul (i) study of a decay curve. '" - I. the times at which the aotivities
are observed; (ii) addition ro.ethod of analysis, '" - weights added to
the sample, which "re only ..!fected by small weighing and/or diluting
errors. The II qu..ntities however have ..ll the procedure steps ... a
source of vari..tion (case (ii)) or ..re ..t 18ll8t ..!footed by the atetistical
character of the ..ctivity counting (mostly ~ 1%. case (i)).

TABLE U.8
Optimum sample actJvlt)' ..... funotJon of countJog

time, if both time and random coincidence rate. are Ihon
liv~ for 'I'll. (B')/'1'./. < 5.8

.,
(b) IfTlI.(B')/TlI, -: 5.6 it is &1aopoasible to caloul..tetheo!'oJmum

s..mple weight (lIJUl/or neutron flux) for .. given 6J.... "ppea.rs from
T..ble 11.6. The counting time 6J must however be ohosen arbitrarily,
a.B there is no optimum value. A counting time 6J - 2.5 T11, allowa
one to deteot more than 80% of the total number of true coinoidenoes.

l.

I
"

3
3.6
4.9

AI/'1'lI.

>25
10
6

If T,l. = 5 m, the optimum counting time is ca. 14 m and the
optimum s..mple ..ctivity is reached for R' ~ 0.3.

Assuming T = 10-' S, u, = 1.645 ..nd R. = R. = R, this means:
0.3 = 2 x 1.645 x 1O-'.j(2R') or R = 1420 cps.

3. Applicotion 10 Slwrl Lived Raiii0i8olop... and Shorl Lived
Background (coincidence counting)

Similar expressions can be derived if both the true coincidence rate
and the b..ckground (raiJdom coincidence r..te) are short lived. They
..re, however, more complex and will not be derived hero. Reference is
m..de to Schulze (24). The confidence level is a.Bsumed to be 99.865%
(u, = 3).

It can be shown th..t distinction should be made between two cases:
(..) If T,/.(B')/T,/• > 5.6 there exists ..n optimum counting time,

which depends on the r..tio T ,/ ,(JJ')/TlI•. AI/Til. is approximately
3 to 5 (see Table 11.5). There also exists an optimum sample weight
(or neutron flux) which allows One to detect the lowest concentration
limit. Indeed, Ro= 6T.j{RI ,.R.,.(R

"
• + R".)} (s"'/') is ..Iso func­

tion of TIl.(B')/TIl• (T..ble 11.5). R
"
...nd R•.• "re the channel rates

..t the beginning of the counting time.

Ezamplt:

Til. = 1 m, 1'1l.(B') = 16 m, TIl.(B')/TIlI = 16 > 5.6. Accord­
ing to T..ble U.5, 6J/TlI. ~ 3.2 or At ~ 3.2 m, whereas Ro.jTlI. ~
5.55, thus Ro= 5.55/.jOO S-I/' = 0.72 S-I/•. Assuming R,.• = R •.• =
R. and T = 1 1"': 6 x 1O-'.j(2Rg) = 0.72 or R. ~ 1930 cps. This
allows one to choose the optimum sample ..ctivity at the beginning of
the counting.
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For a set of" measurements, the best estimates of b and a are

ot'···~... ..... .., ....- _ •• _ _ _ oJ.., __ _ ..

(D) DECAY CUllVJll (single component)

and

where

(11.76)

(11.77)

(11.78)

(11.79)

(11.80)

a'(b) = a"tA) - "/oD'

al(a) - a"(In R.) = L If/oD'

b = -.>. = ("L,IInR,- ~)'LInRdJD'

a - In R. - (L'f LIn R, - L" L"In Rtl/D'

D' -" L'f - (Lid'
The variances are respectively:

1. BackgrO'lJ.M Negligible

The equation R, = R. exp (-AI) must he made linear by the
logarithmical form: In R, - In R. - AI. In tarms of equation (11.67)

this becomes Y = In RI> Z - " a - In R. and b - -~
If at a time 'I, Cl counts are recorded during a counting time Ali,

the counting rate is R, - Clltlt, at the time 'I + 0.5 tlt,(~
tol, «TIll' see section II, A) and the tranaform:i.s III - In R,. Aecord.
ing to equation (11.16) one can write:

al(Rtl - Clltltf - R,tlt,ltltf = R~!it,

An estimate of a'(ytl is possible. using the laws of..error propagation
(see Table 11.3, item 6). .-

a'(ytl 0:: a'(RtlIRf = IfR,tlt, = l/Cj (11.74)

From equation (li.71) it follows

W, _ Ala"(Rtl = ACl (11.75)

The simplest method oC determining a' half.life with ealculable .
statistieal precision (_accuracy if the sample is radiochemically pure
so that the exponential decay of a single radioactive species is the only
factor causing the change of the counting rate) is to measure the time
neeessary to obtain a preset number of counts during each of the"
observations ("preset count" mode of counting). Then all Cl = 0 =
constant and all observations heve the same weight. If this weight is
arbitrarily set = I, then A - 1/0 (from equations (11.71) and (11.75))
aud L W, = ". Equations (11.68), (11.69) and (11.70) a.re then reduced
to:

./

r
I

(11.68)

(11.70)

(11.71)

(11.72)

(11.73)

L IV,x,y, - :i:[j L IV,
= L IV,"; - x' L IV,

W,=Afar

a'(b) = A L W,ID

a'(a) = A L W,,,;ID

a

intereept with ordinate:

L IV,,,; L IV,y, - L w'x, L W,x,Yt _ _
D = Y - b", (11.60)

where A is a constant, arbitrarily chosen to make the values of the
weight convenient for computation, e.g. A = 1. It can Le shown that
A cancels out and does not influence the results. For data that are
only subjected to counting statistics, W is determincd by the number of
counts. For other data, weights are determined from the scatter of the
data (see seetion V, C).

The above formulas make the sum of the squares of the residuals
LZ; = L w, (Y, - Ytl' a minimum. Y, is the value calcnlated for a
given x, using the best estimates of b and a (equations 11.6&) and
(11.60)); Y, is the corresponding experimental value of Y at z = z,.

Standard deviations can be caleulated from the following formulas:

- _ L 1V'lIt. .~ _ L IV,x, '.)
1/ - L IV, ' J: - -L IV, (c[. equatIOn I!..)

W, is the "statistical weight", whieh is inversely proportional to the
variance of the corresponding measurement; (definition):

Confidence limits are ±!la(b) and ±!la(a) in agrecmcnt with previous
definitions (see Table ILl).

Two practical examples will be given below.

~

I,
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The standard db.lation of the half·life can bc calculated u.ing itcm.
3 and 4 in Table 11.3 (r = -I and a = 0.603):

TIl' = 0.603/A

25t505o

"

-
\ .....

.
2

.

4

RSIRS

Fig. 11.14. The optimum meaaurement time (0xpreased in termI or !I'lIa)
as a function of the counting rate ratio or the background to that or the effect
R./R•• allh. be3inning of the m...uremenl (40).

(b) Clwice of nllmb<r of inlerval.!:
At a given total measurement time, a(TI1.)/T". dependa on the

number of intervals ... If .. is too small, optimum accuracy will not
be obtained. If .. is too large, the number of counta recorded per
interval will be too low and often the COllllt difference (ea - eo - eB)
will become negative at relatively low vl'1ues of I. see Figure 11.15 (40).

According to Sterllilski (40) the number of intervals should be 10 to
15. To avoid 1088 of information about the value of T". -partioularly
in the case of low activities - there should be no break between the
auccessive short time intervals. The background is measured during a
sufficiently long time.

~",~

accuraey and the smallest systematic crror is obtained if the meas~ ••1

ments arc programmed as follows:

(a) Clwiu of tolal meaallromenl lime:
If the totsl measurement time is too short, all possible information

is not utilized. On the other hand, if it is too long, the counting rate
becomes negligible compared to the background rate. Obviously there
exists an optimum measuring time (expressed in terms of T",) which
dcpenda mainly on the rntio baokground to signal RDIRa at the be­
ginning of the measurement as appears from Figure 11.14 (40).

5

"

"

(11.8!)

(11.82)

(11.83)

(11.84)

a(T,I,) a(A)
-- - - or a(TlI ,) = 0.603 a(AJ/A'T,/, - A

Thu.

It must be borne in mind - particularly if the "preset count"
method is used - that R, repre.ents the count rate at the time II + 0.5
Al, (if Al, ~ T ,I,) and not at the starting time. Since increasing
perioda of counting may be neceasary a. the counting rate faJJs, this
method is not recomm.nd.d for the d.termination of short half.Ii,·•••
e.g. <15 m.

In the general case when ell Ca. C:a ."•• are the numbers of counts
observed at times I,. I,. I, ... tak.n over counting p<rioda Al" AI,.
Al, • .. the g.n.ral formulas «11.68). (11.60), (11.70» must be used.
with lV, = c, (thu. A = I. a. app.ars from .quation (11.71»:

b = - A'" (L c, L c,t,ln R, - L "'" L c,ln R/)ID

a = In Ro= (L c"f L '" In R, - L c,I, L ",1,ln RlllD
D= L'" L c,ef - (L ",t,)'

With W, = c, and A = I, the gen.ral formulas for the varianc••
b.com.:

a'(b) = a'(A) = L ciiD = L c,/[L c/ L c,l; - (L C/I,)']
= [L ""; - (L c,I,)'IL c,]-' (11.85)

a'(a) =a'(1n R o) = L ""UD (11.86)

A r.presentativ••xampl. for the g.neral case i. desc:ib.d by Cook
and Duncan (39). Th. m.thod describ.d above i. obviou.ly much
more tedious than the graphical d.t.rmination of A and Ro (s.c
Chapt.r 5), although it is more difficult to assess the stati.tical error.
in the latter case. In Chapters 5 and 9, ref.rcnO{; i. wade to comput.r
program. for half·life d.t.rminations.

A th.or.tical analy.i. of the evaluation of .hort half-live. (e.g. on
multiacal.r) by means of the graphical m.thod (measur.ment of eount·
ing rate in a suffici.ntly gr.at numb" of short time int.rval. and plott.
ing on a semilog .cale) has been described by Stcrlinski (40). The be.t
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So far the assumption has been made that the baokground at each
point is negligible. If it is not. the analysis is the same, but weights are
changed. If the background rate is constant. the background measure­
ments taken at various times can be pooled to determine its average
value. In this way the error in background is negligible. since it can
be counted for a sufficiently long total time.

The net counting rate is given by Rj - el/:il, - RB whereas
,,'(RI) :::: el/!l.lf (see equation (11.16». as the error of RB is negligible•

-"Hence: .

,,'WI) = "'(Rtl = el/:ilf = Cj

R~ (el - RB:ilI)'/:ilf (OJ - RB:il,)'

(ef. equation (11.74». Thus, setting A = I, equation (11.71) becomes:-lV, = (c, - RB:ilI)'/e, (11.87)

instead of lVl = eto ami equations (11.82) to (11.86) should be modified
accordingly.

2. BtuJkground lUll Neu1igibk, but OOIl.tanl

3. Ohanging Background

Jaffey (1) discusses the ease in which the background changes and
nceds evaluation at each counting interval. This may occur. when a

.NaI{Tl) detector is activated in the neighborhood of a reactor or
accelerator. If sample plus background are counted for a period :il,
giving Cj counts, and the baekground alone for a period :ilBI giving eBI
counts, then the net counting rate is:

RI = cI/!l.11 - cBI/!l.lBI

I

•
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Fig. 11.15. Influence oftha numLer of time intervals for Do given total measure­
ment time. on the univocality oC the graphical estimate of Tt/a• using "V. AU
the plots were ma.de using the same experimental data. Ca.se A: 71 _ 220j case B:
n = 11; case C: flo =:II 5. The arrow indicates that the count difference for that
interval is negative.

since in this case the error in background is not negligible. Hence:

ej +CBI(~)'
:il,c, - CSI

:ilB'

Setting !I., = !l.IIII!.IBI and A = 1. the statistical weight for a measure-



ment can be calculated from the above equation and equation (11.71)

11', = (e, - ealt.d' (11.88)
OJ + e8jt.,

Thus equatioUB (11.82) to (11.86) can also be used when the background
is not negligible, on condition that OJ is replaced by (OJ - RBt.I,)t/Ci
(coUBtant background, accurately known) or by (e, - eB,t.,)'{(e, +
e8jt.,) respectively (changing background).

(C) THE ADDITION METHOD OF ANALYSIS

The procedure of ti,e addition method in act!vation analysis is
described in Chapter 7, section II, E.

If incr....ing quantities w, of the element to be determined, are
added to the sample, increasing activities will be induced during
activation resulting in increasing measured count rates R,. The function
is linear and has the form Y = a + bz.

Aesuming that the experimental error in w is much emaller than
that in R, equatioUB (11.68) to (11.70) can be used to calculate the
most probable values of a and b. The statistical weights are defined by
11', = AM (equation (11.71)). According to equation (11.7)

.q = 0'1 (sample) + 0'1 (anal)

= 0'1 (sample) + ul (irrad) + 0'1 (chern) + 0'; (count)

In many cases, the analytical work is much better than the sampling,
thus .q ~ .q (sample), i.e. the overall reproducibility 0', i3 determined
by variatioUB in the sample composition. But even when tho repro­
ducibility of the samples is a good deal better than that of the analytical
work. Le.

0'1 ~ 0'; (irrad) + 0'; (chern) + .q (count)

one observes that the overall precision a, is not determined by 0',
(count) alone (as was the case for the decay curve, section V, B), but
depends on other parameters too, such as variatioJ13 in irradiation
conditions, variations i, chemical work, variations in counting geometry
etc. These parameters being subject to approximately the same
variatioUB for all of the samples, it is allowed to give the same statistical
weight to all measurements (all 11', = 1).This is certainly true, if all the
samples are counted so as to obtain approximately tho same total

The quantity ut is not known apriori, as was the case for the decay
curve, but a good estimate is possible from the residuals ZI between
the experimental R,.values, (Rtl.., and the R,.values, which are
calculated from the best estimates of a and b, (Rtloalo:

(11.96)

(11.911)

(11.93)

(l1.1l4)

at(b) = u"'/D'

at(a) = a'w./D'

at = L Zif(n - 2)

ZI - I(Rtl... - (Rtloalol
It can be shown that

where ut is II reliabla estimate of the variance of an observlltion with a
statistical weight W _ 1 and where n is the number of experiments.
The term (n - 2) instead of the more familiar en - 1) (see equation
(11.3» arises from the fact that at least two points are required to
characterize a straight line.

where n is the number of e"P!rimental points.
The best estimate of the weight of the element in the originsl

sample is given by

w. = alb (in units of weight) (11.92)

The standard deviations of a and b can be calculated by means of
equations (11.72) and (11.73) setting WI = 1.

According to equation (11.71) one r.an write:

v~ ~

number of counts. This principle can thus be maintained even if tho
measured counting rates are low as oompared to the background
rate. Moreover, the added weights w, are 80 chosen that they do not
exceed ca. 2-3 times the weight w. originally present. Hence equatioJla
(11.68) to (11.70) will be simplified:

b = (n L w,R, - L w, L Rd/D' - specitio rate (per
unit of weight) (11.89)

a = (L W. L R, - L w, L w,Rd/D' - intercept with ordinate
(rate olthe eloment in

'the sample without
&IlIition) (11.90)

(11.91)

•
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Equation (u.96) is tedious to handle and is therefore replaceJ hyan
equivalent one:

L Z~ = (n - 2)a' = L R~ - (L R,)'/" - b'D'/n (11.97)
This equation allows the calculation of a', hence that of a'(a) and
a'(b) without calculating the individual differences Z/. When using
equation (11.97), a sufficien~ number of decimals must be calculated,
since in many cases (see Table 11.7) L R~ '" (L R,)'!n + b'D'/n.
Even if very small errors of computation are madc, they can "trongly
influence the resulting value of a.

Starting from equations (11.92), (11.93) and (11.94) it is possible to
cstimata the standard deviation a(w,) on the original content u'. of
the element in the sample, using item 2 in Table 11.3.

a'(w,) a'(a) a'(b)
-- "" - +- (11.98)u1 a 2 b'

It can be shown that the variance a'(b) decreascs if a large concentra­
tion interval is inves~igated, i.e. Iw, - wi > 0, where wrepresent. the
arithmetic mean of the w·values. On the other hand, the more w, "W,
thc larger the error of R,. For that reason cxtrapolation to w = 0
(E = a) should be carried out only if a small conr.entra~ion range is
used.

It can be shown that tlI!, error of a and w, is a minimum if the
weights w, added do not e,,~eed ca. 2-3 times the weight w. originally
present (41). It should he remembered that equation (11.98) only
applies if each of the terms alalia, a(b)/b and a(IO,)/,O. is small (:$0.20)
and if a and b are statistically independent of oue another. The former
condition is normally fwfilled, the latter howe\'er is not, as cov (a, b)
" 0 (44). For that reason equation (11.98) is ol\ly an approximation,
and n term 2p[a(a)/a][a(b)/bl should be added, where p is the correlation
coefficient.

If, togethcr "ith the addition series, s "foreign" aamples (i.e.
differcnt from the sample, con~niningw, of the clcmcnt) are irradiaW,
gh'ing an average induced ac~ivi~y R', the content w' of ~he element in
these samplcs can be read from the calibration curvc or calculated from

w' = (R' - a)/b + w. (11.99)

A good es~imate of the expected s~andard deviation a(IO') is found by
classical statistical methods (42):

u(w') = u(w)1 (11.100)

where the quantity I (from I.test) has (n - 2) degrees of freedom
(D.F.). The value of I can be found in statiatical tables. At the prob­
ability level P=O.68, or P'=0.32, 1=:1 &88UlIling D.F. ;;:10.

a(w) can be calculaW from:

a'(w) = a'[(n + ')In, + (B' - lI)"'lb' Dl/b' . (11.101)

where' = number of determinations of w'

11 = (L Bil/n
The error on B' is a minimum if B' = 11 and increases for R' ~ 11.

As an illustration, a practical example will be described.

Ezamplt.: DelerminoJion o!lrau.t 'of osmium in M111l<nium. (Spectro­
graphically pure and commercial quality)

Procedure, irradiation conditions, chemical separations, counting
equipment: see ref. (43). •

Twelve 10 mg samples of spectrographically pure ruthenium (added
amounts of osmium; 0: 0.10: 0.25: 0.50; 0.80 and 1.00 pog, see Table
11.7) were irradlaW together with three 10 mg aamples of commercial

TABLE 11.7 •
Calculatlona Cor the determination or osmium in lpectrographicaIl,y pure

rutheDium, using &11 addition method or anaIyai8

Sample R ... net iUO. w-~g o.
number activity (0/6m) added BID ID' B'

I 4,630 0 0 0 20.620.900
2 4,872 0 0 0 23,736,384
3 0.1 -(0)
4 6,411 0.1 641 0.01 41,100,921
6 6,667 0.26 2,167 0.0626 76,116,869
6 9,710 0.26 2,428 0.Q626 94,284,100
7 12,384 0.60 6,192 0.26 163,363,466
8 13,391 0.60 8,696 0.26 179,318,681
9 13,607 0.60 8,764 G.26 162,439,049

10 17,630 0.80 14,104 0.64 310,816,900
11 17,360 0.80 13,844 0.64 299,463,026
12 18,767 1.00 18,767 1.00 361,826,049

comm.Ru 2,436
.. 2,620.. 2,707

(oj Sample 3 ddoardod. IOperaled cwnlum port1y Ioat.
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STANDA.RD DEVUTIOXS

CALCULATED OSMIUl[ CO~'"TE~T

COMMERCIAL RUTHE:SIUlI

w. = alb = 0.348 /,g Os (in 10 mg Ru). i.•. 34.8 ppm.
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I R' = 1.731,985,554

I 10' = 3.165

I Rw = 71.581

Iw = 4.70

(Equation 11.97) = 1,731,985.554 - 1,470,062.081 - 257.135,557
= 4.787,916. Hence a' = I Z'/(n - 2) = 531,991

a'(b) = a'nlD' = 459.874 thus a(b) = 678 or 4.54%

a'(a) = at I w'ID' = 132,318 thus ala) = 364 or 7.01 %

a'(w.) = a'(alb) = 0.000841 thus a(w.) = 0.029 /,g or 8.4%

Taking the covariancc term into account, onc finds a(w.l::::: 11 %.

ruthenium. The "'0.; activity was counted after chemical separation,
using a NaI(TI) detector. The calculations are summarized in Table
11.7.

D' = n I 10' - (I 10)' = 12.725

b = (n I Rw - I 10 I R)ID' = 14.909 c/5 ml/,g Os

a = (Iw'IR - IwIRw)ID' = 5,190 cj5m

SOM).lATIONS

COEFFICIENTS a and b

n = 11

IR = 127.1G4

(Equation lUOI) R' = 2.435; 2.520; 2.707, average value 2554
c/5 m.

Hence 10' = 16.8 ppm.
Estimated standard deviation r = 3, n = 11, 9 degrees of froedom,

I 0:: I: a(w') ::::: Om8 /,g or 1.8 ppm.
(Note: the commercial sample cont·ained less osmium than the

spectrographically pure sample.)
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TABLE 12.2 (c<>ntinued)

References
APPENDIX 1

Rare earlha Rare .arthe B 102-(} 10lJ-K 142-R 42-W 80
Melals+a1loya A 153
Minerals + A 151l-O 68-0 lO5-D 7lJ-F 9lJ-H 42-H 43-H 44-
melAlOritee L 124--L 143-8 49-8 52-8 53
Organio B 185-K 12-8 20-8 94-8 95-8 98
AIr G 62
Molten ..Ito B 178
Solutions T 24
Malrix nol B 133-B 181l-O 10·l-L 106-N 27-R 106-Y 21
defined

THERMAL NEUTRON CROSS SEcrIONS

The experimental data Cor the tables oC this appendix are bllSOd on
the compilation "Neutron Cross Sections" by D. J. Hughes and R. B.
Schwartz (BNL-325, 2nd ed. 1958) and by D. J. Hughes, B. A.
Magumo and M. K. Brussel (BNL-325, Supplement I, 1960: Ull.
Government Printing Office, Washington D.C.); and on the "Chart of
the Nuclides" by N. E. Holden and F. W. Walker (General Electrio,
Schenectady, N. Y., (1968).

In Table I, the total croes section (a2'), the capture or absorption
cross aection (a., a...) and the average scattering cross aeotion (u,)·
Cor thermal neutrons are given Cor the elements. It should be noted that
the abaorption cross aoction listed is the 2.2 x 10" em S-1 (0.025 eV)
value, a...(v.), although the value consistently uaed in more aoourata
calculations is ("/,,)/2 or 1/1.128 times this value, if the neutron
temperature is 293.6°C. For a neutron temperature '1', the value

"/,, (293.6)1/1
a...(ii) ~ a.",(v') ""2 T

must be uaed. More details are given in Chapter 10, aection II, B, 4b.
In Table 2, the isotopio neutron aotivation oross aoctions Cor thermal

neutrous are given (in barn). As already mentioned in Chapter 3,
aection V, C, I, the reaction rate can be calculated Crom the knowledge
oC the cross section a. at a particular velocity v.' on condition that
a CC 1/•. The velocity v. is taken as 2.2 x 10" em S-I, the most prob.
able velocity oC a Maxwellian distribution at rooc (corresponding
energy 0.025 eV). The cross sections in the table are given Cor this
velocity, except in aome ca.ses where they reCer to a reactor neutron
spectrum (values with asterisk). The activation cross IIIlCtions are Cor
(n, y) reactions, except when explicitly stated Cor (n, p) or (n, CI). For
heavy nuclei (Z > 88) the cross section Cor fission is also included.

For practical use in activation analysis (inducedllCtivity calculations,
aee equation (10.1)), the per cellt abundance ofths target Isotope in the
natural element and the h..l£.li£e oC the activity produced are a1Io given.
(Symbols: a - year, d - day. h - hour, min - minute, • - aecond.)

7'7
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